scholarly journals Synthesis and antimicrobial evaluation of some novel thiomorpholine derived 1,4-disubstituted 1,2,3-triazoles

2016 ◽  
Vol 81 (3) ◽  
pp. 233-242 ◽  
Author(s):  
Kumaraswamy Battula ◽  
Sirassu Narsimha ◽  
Vasudevareddy Nagavelli ◽  
Priyanka Bollepelli ◽  
Rao Srinivasa

A convenient synthesis of novel1,4-disubstituted 1,2,3-triazoles (4a-j & 5a-j) is reported via copper (I) - catalyzed one pot [3+2] cycloaddition of various alkyl halides, sodium azide with (prop-2-yn-1-yl)thiomorpholine and 4-(prop-2-yn-1-yl)thiomorpholine 1,1-dioxide. All the synthesized compounds were investigated for their antimicrobial activity. Compounds 4a, 4b, 4c, 4g, 5a and 5j against S.epidermidis, 4a, 5a and 5d against P. aeroginosa, 4a, 4b and 4g against K.pneumoniae, 4b, 5a and 5d against S.aureus and 5b, 5e and 5j against B.Subtilis have shown excellent antibacterial activity compared to the standard drugs Penicillin and Streptomycin. Compounds 4c, 4e, 4f, 4j, 5c, 5d, 5g and 5j have registered moderate antifungal activity as compared with standard drug Ampothericin-B.

2018 ◽  
Vol 16 (1) ◽  
pp. 3-10
Author(s):  
Aniket P. Sarkate ◽  
Kshipra S. Karnik ◽  
Pravin S. Wakte ◽  
Ajinkya P. Sarkate ◽  
Ashwini V. Izankar ◽  
...  

Background:A novel copper-catalyzed synthesis of substituted-1,2,3-triazole derivatives has been developed and performed by Huisgen 1,3-dipolar cycloaddition reaction of azides with alkynes. The reaction is one-pot multicomponent.Objective:We state the advancement and execution of a methodology allowing for the synthesis of some new substituted 1,2,3-triazole analogues with antimicrobial activity.Methods:A series of triazole derivatives was synthesized by Huisgen 1,3-dipolar cycloaddition reaction of azides with alkynes. The structures of the synthesized compounds were elucidated and confirmed by 1H NMR, IR, MS and elemental analysis. All the synthesized compounds were tested for their antimicrobial activity against a series of strains of Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and against the strains of Candida albicans, Aspergillus flavus and Aspergillus nigar for antifungal activity, respectively.Results and Conclusion:From the antimicrobial data, it was observed that all the newly synthesized compounds showed good to moderate level of antibacterial and antifungal activity.


2020 ◽  
Vol 9 (2) ◽  
pp. 961-967 ◽  

The present research works a series of new 1H-Indole derivatives were synthesized. The title compound was obtained by the reaction of indole with chloroacetylchloride in toluene afforded 2-chloro-1-(indoline-1-yl) ethanone which reacts with 1,4 diamine benzene in chloroform afforded 2-((4-aminophenyl)amino)-1-(1H-indol-1-yl)ethan-1-one, on further reaction with various acetophenone in presence of acetic acid in ethanol gave various final derivatives. After synthesis of compounds, the synthesized compounds were characterized by their IR, 1HNMR spectral data and elemental analysis. These derivatives were screened for their antimicrobial activity (Paper-disk-plate technique (disc diffusion method) and Tube-dilution technique (broth microdilution technique), antifungal activity of all synthesized compounds were evaluated against Aspergillus niger and Candida albicans (ATCC 10231) using Fluconazole as the standard drug using the paper plate method and antibacterial activity against both Gram-positive (Bacillus subtilis) and Gram-negative bacteria (Escherichia coli) using Ampicillin as standard medication at a concentration of 50g/ml, 100g/ml. The collected compounds were evaluated for antibacterial activity and antifungal activity. All compounds exhibit significant antimicrobial activity.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Ravi Bhushan Singh ◽  
Nirupam Das ◽  
Md. Kamaruz Zaman

A series of new 2,4,6-trisubstituted-s-triazine was synthesized, assessed for antimicrobial activity, and characterized by FTIR, 1HNMR, 13CNMR, and elemental analysis. The tested compounds, 4d, 4g, 4h, 4k, and 4n, have shown considerable in vitro antibacterial efficacy with reference to the standard drug ciprofloxacin (MIC 3.125 μgmL−1 against B. subtilis, E. coli, and K. pneumoniae). It was observed that compounds 4d and 4h displayed equipotent antibacterial efficacy against B. subtilis (MIC 3.125 μgmL−1) and S. aureus (MIC 6.25 μgmL−1). The studies demonstrated that the para-fluorophenylpiperazine substituted s-triazine (4n) was potent and exhibited broad spectrum antibacterial activity against S. epidermidis, K. pneumoniae, and P. aeruginosa with MIC of 6.25 μgmL−1 and for E. coli, it showed an MIC of 3.125 μgmL−1 equipotent with reference to the standard drug. Among all the compounds under investigation, compound 4g also demonstrated significant antifungal activity (3.125 μgmL−1) against C. albicans.


2019 ◽  
Vol 70 (10) ◽  
pp. 3603-3610
Author(s):  
Madalina Mihalache ◽  
Cornelia Guran ◽  
Aurelia Meghea ◽  
Vasile Bercu ◽  
Ludmila Motelica ◽  
...  

The three copper complexes having a-ketoglutaric acid (H2A) and 1- (o-tolyl) biguanide (TB) ligands have been synthesized and characterized. The proposed formulas for these complexes are: [Cu(TB)(HA)]Cl (C1), [Cu(TB)(HA)CH3COO]�H2O (C2) and [Cu(TB)(HA)](NO3) (C3) where HA represents deprotonated H2A. The complexes obtained were tested for antibacterial activity against Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853, antifungal activity on Candida albicans ATCC 10231 and antitumor activity on HeLa tumor cells. Due to the antitumor, antifungal, antimicrobial activity and inhibition of inert substrate adhesion, complexes synthesized could be used for potential therapeutic applications.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 46
Author(s):  
Karolina Subko ◽  
Sara Kildgaard ◽  
Francisca Vicente ◽  
Fernando Reyes ◽  
Olga Genilloud ◽  
...  

The marine-derived fungus Stilbella fimetaria is a chemically talented fungus producing several classes of bioactive metabolites, including meroterpenoids of the ascochlorin family. The targeted dereplication of fungal extracts by UHPLC-DAD-QTOF-MS revealed the presence of several new along with multiple known ascochlorin analogues (19–22). Their structures and relative configuration were characterized by 1D and 2D NMR. Further targeted dereplication based on a novel 1,4-benzoquinone sesquiterpene derivative, fimetarin A (22), resulted in the identification of three additional fimetarin analogues, fimetarins B–D (23–25), with their tentative structures proposed from detailed MS/HRMS analysis. In total, four new and eight known ascochlorin/fimetarin analogues were tested for their antimicrobial activity, identifying the analogues with a 5-chloroorcylaldehyde moiety to be more active than the benzoquinone analogue. Additionally, the presence of two conjugated double bonds at C-2′/C-3′ and C-4′/C-5′ were found to be essential for the observed antifungal activity, whereas the single, untailored bonds at C-4′/C-5′ and C-8′/C-9′ were suggested to be necessary for the observed antibacterial activity.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


2017 ◽  
Vol 67 (3) ◽  
pp. 309-324 ◽  
Author(s):  
Nadjet Rezki ◽  
Mohamed Reda Aouad

AbstractThe present study describes an efficient and ecofriendly, ultrasound, one-pot click cycloaddition approach for the construction of a novel series of 1,4-disubstituted-1,2,3-triazoles tethered with fluorinated 1,2,4-triazole-benzothiazole molecular conjugates. It involved three-component condensation of the appropriate bromoacetamide benzothiazole, sodium azide and 4-alkyl/aryl-5-(2-fluorophenyl)-3-(prop-2-ynylthio)-1,2,4-triazoles4a-ethrough a Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction. This approach involvesin situgeneration of azidoacetamide benzothiazole, followed by condensation with terminal alkynes in the presence of CuSO4/Na-ascorbate in aqueous DMSO under both conventional and ultrasound conditions. Some of the designed 1,2,3-triazole conjugates6a-owere recognized for their antimicrobial activity against some bacterial and fungal pathogenic strains.


2017 ◽  
Vol 7 (4) ◽  
pp. 420 ◽  
Author(s):  
Adriana Favaretto ◽  
Fabiana Tonial ◽  
Charise Dallazem Bertol ◽  
Simone Meredith Scheffer-Basso

This study aimed to evaluate tough lovegrass leaf and root extracts antimicrobial activity. The extracts (plant material: solvent, 1:10) were prepared by maceration with methanol:water (1:1) during ten days followed by a concentration in a rotary evaporator under reduced pressure. The extracts were resuspended in water containing 1% of dimethylsulfoxide (DMSO) to obtain a final concentration of 100 mg/mL and then filtered through a sterilizing membrane with 0.22μm. The antibacterial activity of the leaf and root extracts were evaluated against pathogenic and phytopathogenic bacteria by agar well diffusion and microdilution broth methods for the minimum inhibitory concentrations (MIC) determination. The antifungal activity of tough lovegrass leaf and root extracts were evaluated by micelial growth inhibition and conidial germination inhibition. The extracts presented low antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis, and Xanthomonas translucens, but the leaf extracts presented significant antifungal activity against the phytopathogenic fungus Drechslera tritici-repentis. The results support the continuity of the study in improving the effectiveness of the active extract for a possible use in pharmacology and agronomy and in attempting to determine the probable active antimicrobial compound.


Author(s):  
Haribhai Rabari ◽  
Hetal Vankar ◽  
Beenkumar Prajapati

The emergence of multidrug microbial resistance is the main challenges that the modern scientists have so far been facing in the recent era. In this respect, new series of drug classes having potential to give antimicrobial effect have been synthesized. A new series of 5- substituted-1,10 b-dihydroimidazole[1,2-c]quinazoline derivatives 8a-e have been synthesized and screened for antibacterial activity and antifungal activity. Synthesized derivatives were characterized by IR, MASS and 1H-NMR spectroscopy. Synthesized compounds show good activity, which was comparable to the standard drug and it can be useful for the further clinical study. Antibacterial activity was evaluated against four different pathogenic bacterial strains like Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudo-monas aeruginosa. Among the screened compounds, 8e show good antibacterial activity against Staphylococcus aureus and Escherichia coli with MIC of 50 and 100 μg/ml respectively. Antifungal activity was evaluated  against two strains of fungi. Among the synthesized derivates, compound 8c was emerged out as the potent antifungal compound against Candida albicans and Aspergillus niger with MIC of 25 μg/ml and 75μg/ml respectively. Compound 8e also shows good antifungal activity with MIC of 50 μg/ml against both Candida albicans and Aspergillus niger. The overall results of this study indicated that  synthesized quinazoline derivatives had the potential to act as an antibacterial and antifungal agent, hence further investigation is warranted.


2020 ◽  
Vol 13 (9) ◽  
pp. 229
Author(s):  
Volodymyr Horishny ◽  
Victor Kartsev ◽  
Vasyl Matiychuk ◽  
Athina Geronikaki ◽  
Petrou Anthi ◽  
...  

Herein we report the design, synthesis, computational, and experimental evaluation of the antimicrobial activity of fourteen new 3-amino-5-(indol-3-yl) methylene-4-oxo-2-thioxothiazolidine derivatives. The structures were designed, and their antimicrobial activity and toxicity were predicted in silico. All synthesized compounds exhibited antibacterial activity against eight Gram-positive and Gram-negative bacteria. Their activity exceeded those of ampicillin and (for the majority of compounds) streptomycin. The most sensitive bacterium was S. aureus (American Type Culture Collection ATCC 6538), while L. monocytogenes (NCTC 7973) was the most resistant. The best antibacterial activity was observed for compound 5d (Z)-N-(5-((1H-indol-3-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)-4-hydroxybenzamide (Minimal inhibitory concentration, MIC at 37.9–113.8 μM, and Minimal bactericidal concentration MBC at 57.8–118.3 μM). Three most active compounds 5d, 5g, and 5k being evaluated against three resistant strains, Methicillin resistant Staphilococcus aureus (MRSA), P. aeruginosa, and E. coli, were more potent against MRSA than ampicillin (MIC at 248–372 μM, MBC at 372–1240 μM). At the same time, streptomycin (MIC at 43–172 μM, MBC at 86–344 μM) did not show bactericidal activity at all. The compound 5d was also more active than ampicillin towards resistant P. aeruginosa strain. Antifungal activity of all compounds exceeded those of the reference antifungal agents bifonazole (MIC at 480–640 μM, and MFC at 640–800 μM) and ketoconazole (MIC 285–475 μM and MFC 380–950 μM). The best activity was exhibited by compound 5g. The most sensitive fungal was T. viride (IAM 5061), while A. fumigatus (human isolate) was the most resistant. Low cytotoxicity against HEK-293 human embryonic kidney cell line and reasonable selectivity indices were shown for the most active compounds 5d, 5g, 5k, 7c using thiazolyl blue tetrazolium bromide MTT assay. The docking studies indicated a probable involvement of E. coli Mur B inhibition in the antibacterial action, while CYP51 inhibition is likely responsible for the antifungal activity of the tested compounds.


Sign in / Sign up

Export Citation Format

Share Document