scholarly journals Role of edta capped cobalt oxide nanomaterial in photocatalytic degradation of dyes

Author(s):  
Meena Singh ◽  
Dipti Vaya ◽  
Ravi Kumar ◽  
Bijoy Das

Dyes released from textile, paint, and various other industries in wastewater have posed long term environmental damage. Functional nano-materials provide a hope and opportunities to treat these effluent wastes in a rapid and efficient way due to their large surface area to volume ratios. Synthesis of 2,2',2'',2'''-(Ethane-1,2-diyldinitrilo)tetraacetic acid (EDTA) cap-ped cobalt oxide nanomaterial as a photocatalyst has been investigated and utilized for the rapid and efficient removal of malachite green (MG) and crystal violet (CV) dyes. The morphological, structural, optical, chemical and thermal properties of the synthesized nanomaterial were investigated using different characterization tools such as Scanning electron microscopy(SEM), Transmis-sion electron microscopy (TEM), X-ray diffraction (XRD), Ultra violet visible (UV-Vis), Fourier transform infrared (FT-IR) spectroscopy and Thermogra-vimetric analysis (TGA) etc. The prepared EDTA capped Cobalt oxide nanomaterials display better photocatalytic degradation, 56.3 % for MG and 37.9 % for CV in comparison to the pure Cobalt oxide, 47.7 and 27.6 %, respectively under visible light illumination. The kinetics study followed the pseudo-first order kinetic model and Freundlich adsorption isotherm model. The incremental photodegradation of these two dyes was attributed by mor-phology of the nanomaterial which favour effective electron/hole separation.

2020 ◽  
Vol 16 ◽  
Author(s):  
Lili Yang ◽  
Chuanguo Li ◽  
Wenjie Zhang

BACKGROUND: Photocatalytic oxidation of organic pollutants in the environment has been studied for more than half a century. Titanate has the activity on degradation of organic pollutants under UV light illumination. Template directed sol-gel method is capable of producing porous structure in titanate during high temperature thermal treatment. METHODS: The materials were characterized using X-ray powder diffraction, transmission electron microscopy, scanning electron microscopy, surface area and pore size analyses, UV-Visible spectrometry, and X-ray photoelectron spectroscopy. Photocatalytic activity of the CeTi2O6 material was evaluated through ofloxacin degradation. RESULTS: Brannerite structured CeTi2O6 was the major component in the samples, and the addition of CTAB caused a slight growth of CeTi2O6 crystals. Porous structure formed in the porous sample after the removal of CTAB template, and the surface area and pore volume were greatly enlarged. The first order reaction rate constant for photocatalytic degradation of ofloxacin was 9.60×10-3 min-1 on the nonporous CeTi2O6 sample, and it was as large as 2.44×10-2 min-1 on the porous CeTi2O6 sample. The addition of CTAB can influence the physico-chemical properties of the porous CeTi2O6, such as the improved activity on photocatalytic degradation of ofloxacin. CONCLUSION: The CeTi2O6 samples were composed of majority brannerite CeTi2O6, and CeTi2O6 crystallite sizes for the nonporous and porous samples were 38.1 and 43.2 nm. The burning up of CTAB during calcination produced abundant pores in the porous material. After 50 min of reaction, photocatalytic degradation efficiencies on the nonporous and porous CeTi2O6 samples were 38.1% and 70.5%.


2018 ◽  
Vol 24 (8) ◽  
pp. 5764-5767
Author(s):  
Abhinav K Nair ◽  
P. E JagadeeshBabu

TiO2 nanoparticles have been widely studied for photocatalytic degradation of dyes, but their small size makes catalyst recovery difficult. When compared to TiO2 nanoparticles, nanofibers are larger in size and exhibit good photocatalytic activity. Doping TiO2 with suitable modifiers like silver can further boost their performance. In the present work, TiO2 nanofibers were synthesized using hydrothermal method. The obtained TiO2 fibers were then doped with silver via photo-deposition method under ultra-violet light irradiation. Scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction were used to characterize the nanofibers. Future, these nanofibers were used to synthesize a hierarchical photocatalytic membrane to enable continuous degradation and filtration. The effects of catalyst loading on permeation and dye removal were studied using rhodamine B. The silver doped TiO2 nanofiber membranes exhibited good dye removal capabilities.


NANO ◽  
2014 ◽  
Vol 09 (02) ◽  
pp. 1450015 ◽  
Author(s):  
SHAOFANG SUN ◽  
YAFAN WU ◽  
XIAN ZHANG ◽  
ZHONGJIE ZHANG ◽  
YAN YAN ◽  
...  

The removal of CIP from the environment has become a mandatory issue. In our paper, we have realized the visible-light-driven degradation of CIP on the BiVO 4– Bi 2 WO 6 nano-heterojunction photocatalysts. The synthesized photocatalysts were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible (UV-Vis) absorption spectra and photoluminescence (PL) spectra. Compared with the single-phase BiVO 4 and Bi 2 WO 6 counterparts, BiVO 4– Bi 2 WO 6 nano-heterojunction photocatalysts show enhanced photocatalytic degradation activities in visible-light-driven CIP degradation. Particularly, when R( Bi 2 WO 6∕ BiVO 4) = 10 wt .%, the products exhibit the highest CIP degradation ratio in 60 min of 76.8% under visible light illumination. The tentative mechanism of the interface charge transfer (IFCT) effect in the BiVO 4– Bi 2 WO 6 heterojunction structure is also discussed by using the band position calculation.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5012
Author(s):  
Cecilia O. Akintayo ◽  
Omolola H. Aremu ◽  
Wilfred N. Igboama ◽  
Simphiwe M. Nelana ◽  
Olushola S. Ayanda

In this study, the use of ultra-violet (UV) light with or without iron oxide nanoparticles (IONPs) for the degradation of synthetic petroleum wastewater was investigated. The IONPs was synthesised by sodium borohydride reduction of ferric chloride solution and was characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), x-ray fluorescence spectrophotometry (XRF), and energy dispersive spectroscopy (EDS). The amount of degradation was evaluated by chemical oxygen demand (COD) determination. Experimental results show that the COD removal from synthetic petroleum wastewater by IONPs/UV system was more effective than they were independently. The combination of UV light at a wavelength of 254 nm, pH of 8, and 1.0 g of IONPs resulted in COD removal from 10.5% up to 95.5%. The photocatalytic degradation of synthetic petroleum wastewater is about 1.3–2.0 times faster in comparison to UV light only. The removal of COD from synthetic petroleum wastewater by UV light and IONPs follows the pseudo-first-order kinetic model with rate constant k ranging from 0.0133 min−1 to 0.0269 min−1. Consequently, this study has shown that the use of UV light in the presence of IONPs is favourable and effective for the removal of organic pollutants from petroleum refinery wastewater.


2018 ◽  
Vol 34 (12) ◽  
pp. 842-859 ◽  
Author(s):  
Asghar Khodkar ◽  
Seyed Mostafa Khezri ◽  
Alireza Pendashteh ◽  
Shahrzad Khoramnejadian ◽  
Leila Mamani

In this study, a new magnetic α-Fe2O3@MIL-101(Cr)@TiO2 photocatalyst was successfully synthesized. The material synthesized had been fully characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and Brunauer–Emmett–Teller isotherm methods. The X-ray diffraction analysis corroborates that nanoparticles are polycrystalline with rhombohedral and tetragonal crystal structures for Fe2O3 and TiO2, respectively. In addition, the photocatalytic degradation of the herbicide paraquat in the presence of α-Fe2O3@MIL-101(Cr)@TiO2 under ultraviolet (UV) irradiation was studied. The effect of experimental parameters such as the initial concentration of catalyst, the pH, and the initial paraquat was investigated. The optimal conditions were achieved for concentration of catalyst 0.2 g L−1, pH 7, and concentration of paraquat 20 mg L−1. The photocatalytic degradation efficiency was 88.39% after 15 min with α-Fe2O3@MIL-101(Cr)@TiO2 under UV irradiation. The pseudo-second-order kinetic model for photocatalytic degradation of paraquat was obtained. The catalysts could be recovered and reused without any loss of efficiency for five times in the consequent reactions. To the best of our knowledge, this is the first report on the photocatalytic degradation of paraquat using new α-Fe2O3@MIL-101(Cr)@TiO2 photocatalyst under UV irradiation condition.


2021 ◽  
Vol 23 (2) ◽  
pp. 323-332

<p>The degradation of Remazol Black (RBB) by S-TiO2 photocatalyst was investigated. X-ray diffraction, fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and UV-vis specular reflectance spectroscopy has been used to characterize S-TiO2. The results suggested that the optical absorption edge of TiO2 was red-shifted by the addition of S dopants and the bandgap energy was 3.02 eV. The sulfur species were found to be evenly dispersed on the TiO2 crystal lattice as cationic sulfur (S6+) which corresponds to the cationic substitution on TiO2. The particle size decreased to 4-14 nm after S doping, which indicates that the addition of S dopants has contributed to an improvement in the photocatalyst surface area. The degradation of RBB was achieved 94% after 120 min visible light irradiation, a remarkable increase compared to bare TiO2 which was only able to degrade 48% of RBB at the same time. Optimization of the pH showed that the optimum pH for RBB degradation was 3.0, and the photocatalyst dose was 0.8 g L-1. Kinetic study showed that S-TiO2 photocatalytic degradation of RBB followed the pseudo-second-order kinetics model. Reducing the bandgap has been found to increase the activity of photodegradation in the visible light region.</p>


2021 ◽  
Author(s):  
RATHIKA GOVINDASAMY ◽  
SUBA VELU ◽  
SANTHANA LAKSHMI DURAIKKANNU ◽  
ROOPALA RANI SEKAR

Abstract In recent decades, the analysis of nanoparticles is of greater importance for their applications in various fields. This present work also focuses the novel biological green material to synthesize the copper and cobalt oxide nanoparticles. The copper oxide (CuO) and cobalt oxide (Co3O4) nanoparticles (nps)have been synthesized by biological strategy utilizing AH (Araucaria heterophylla) gum extract. The characterization techniques, i.e. UV, GC-MS, FT-IR, XRD, SEM, HR-TEM provide concrete information about the morphology, crystalline nature and structure of the synthesized nanoparticles. The high resolution TEM and SAED images confirm the formation of spherical shaped (Co3O4) and oval shaped (CuO) isolated nanoparticles. The catalytic adequacy of the developed catalyst, copper oxide (CuO) and cobalt oxide (Co3O4) nanoparticles was analyzed for the degradation of dyes: Methylene Blue (MB), Congo Red (CR), Acid Violet (AV).The kinetic investigations for the reduction of synthetic dyes by the nanoparticles were assessed and the reduction contemplates are very much fitted with the pseudo second order kinetic model with less time.The antibacterial and antifungal activity of the prepared nanoparticles have been evaluated against Escherichiacoli, Staphylococcus aureus, Bacillus subtilis, Aspergillusniger and Candida albicans.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin

AbstractIn the present work, we have developed a mesoporous silicalite-1 using CMC as a template for the removal of MB from aqueous solution. The synthesized silicalite-1 were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Energy-dispersive X-ray spectroscopy (EDAX) and N2 adsorption–desorption isotherm (BET). XRD and FT-IR analysis confirmed the formation of crystallinity and development of MFI structure in the mesoporous silicalite-1. The adsorption of MB dye on mesoporous silicalite-1 was conducted by batch adsorption method. The effect of various parameters such as adsorbent dosage, initial dye concentration, contact time and temperature on the dye uptake ability of silicalite-1 was investigated. The operating parameters for the maximum adsorption are silicalite-1 dosage (0.1 wt%), contact time (240 min), initial dye concentration (10 ppm) and temperature (30 ℃). The MB dye removal onto mesoporous silicalite-1 followed pseudo-second-order kinetic and Freundlich isotherm. The silicalite-1 exhibits 86% removal efficiency even after six adsorption–desorption cycle. Therefore, the developed mesoporous silicalite-1 is an effective eco-friendly adsorbent for MB dye removal from aqueous environment.


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal

This study presents a hybridized photocatalyst with adsorbate as a promising nanocomposite for photoremediation of wastewater. Photocatalytic degradation of bromophenol blue (BPB) in aqueous solution under UV-irradiation of wavelength 400 nm was carried out with TiO2 doped with activated carbon (A) and clinoptilolite (Z) via the co-precipitation technique. The physiochemical properties of the nanocomposite (A–TiO2 and Z–TiO2) and TiO2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy. Results of the nanocomposite (A–TiO2 and Z–TiO2) efficiency was compared to that with the TiO2, which demonstrated their adsorption and synergistic effect for the removal of chemical oxygen demand (COD) and color from the wastewater. At an optimal load of 4 g, the photocatalytic degradation activity (Z–TiO2 > A–TiO2 > TiO2) was found favorably by the second-order kinetic model. Consequently, the Langmuir adsorption isotherms favored the nanocomposites (Z–TiO2 > A–TiO2), whereas that of the TiO2 fitted very well on the Freundlich isotherm approach. Z–TiO2 evidently exhibited a high photocatalytic efficacy of decomposition over 80% of BPB (COD) at reaction rate constant (k) and coefficient of determination (R2) values of 5.63 × 10−4 min−1 and 0.989, respectively.


Sign in / Sign up

Export Citation Format

Share Document