scholarly journals “Race for resources” in astrospace: What does the future hold?

2015 ◽  
Vol 67 (4) ◽  
pp. 304-327
Author(s):  
Marko Filijovic

The paper analyses how a fast advance in technology can ease both discovering and exploitation of alternative energy resources available in space, and at the same time can open new long-term conflicts over supremacy in commercialisation of space resources. The author considers viability of actual and planned projects of members of the prestigious club of ?space nations?-the United States, Japan, Russia and the European Union. Global energy demand growth stimulates technologically advanced countries to explore more intensively the technical feasibility and economic viability of renewable energy sources in space. Along with advancement in space technology in the foreseeable future, astro-resources could be used as an alternative or at least a supplement to the existing resource base. The author argues that the increasing space technology ambitions of China, India and, to some extent Iran, create a potential knot of new geopolitical and geoeconomical international conflicts. In conclusion, the author emphasizes that the extraterrestrial sources for the Earth's energy needs will not only stay an important alternative basis for energy security in decades to come, but space itself is likely to become rather a new battlefield of the great powers? strategic interests than a part of the common heritage of mankind, equally accessible to all nations.

Author(s):  
S.V. Goncharov ◽  
◽  
V.V. Karpachyov ◽  

The 21st century is entering the era of a leading to the development of environmentally clean and renewable energy sources, decarbonization and a decrease in global consumption of primary energy in the form of hydrocarbons in the European Union, the United States and other countries. A number of countries have a mandatory level of biofuel use, supported by tax incentives and subsidies. The EU Red Standard and the California Low Carbon Fuel Standard are policy initiatives that keep the demand for biofuels growing. In the next decade, the consumption of vegetable oils for biofuel production is projected to grow by 15%. The sowing area of oil crops in the Russian Federation in 2020 amounted to 14.3 million hectares, while 23% of the processing capacities of 25 million tons were not loaded. Turkey, Egypt and Iran will be among the top 5 major importers of Russian oil, along with China and India. Soybean and rapeseed are the main crops for processing into biodiesel. According to forecasts, the export of rapeseed oil may reach 1.1– 1.4 million tons by 2024. Renewable sources of primary energy consumption in Russia should reach 6% in its structure by 2040, which implies the development of alternative energy including the production of raw materials for biodiesel in.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-12
Author(s):  
Lauren K. D’Souza ◽  
William L. Ascher ◽  
Tanja Srebotnjak

Native American reservations are among the most economically disadvantaged regions in the United States; lacking access to economic and educational opportunities that are exacerbated by “energy insecurity” due to insufficient connectivity to the electric grid and power outages. Local renewable energy sources such as wind, solar, and biomass offer energy alternatives but their implementation encounters barriers such as lack of financing, infrastructure, and expertise, as well as divergent attitudes among tribal leaders. Biomass, in particular, could be a source of stable base-load power that is abundant and scalable in many rural communities. This case study examines the feasibility of a biomass energy plant on the Cocopah reservation in southwestern Arizona. It considers feedstock availability, cost and energy content, technology options, nameplate capacity, discount and interest rates, construction, operation and maintenance (O&M) costs, and alternative investment options. This study finds that at current electricity prices and based on typical costs for fuel, O&M over 30 years, none of the tested scenarios is presently cost-effective on a net present value (NPV) basis when compared with an alternative investment yielding annual returns of 3% or higher. The technology most likely to be economically viable and suitable for remote, rural contexts—a combustion stoker—resulted in a levelized costs of energy (LCOE) ranging from US$0.056 to 0.147/kWh. The most favorable scenario is a combustion stoker with an estimated NPV of US$4,791,243. The NPV of the corresponding alternative investment is US$7,123,380. However, if the tribes were able to secure a zero-interest loan to finance the plant’s installation cost, the project would be on par with the alternative investment. Even if this were the case, the scenario still relies on some of the most optimistic assumptions for the biomass-to-power plant and excludes abatement costs for air emissions. The study thus concludes that at present small-scale, biomass-to-energy projects require a mix of favorable market and local conditions as well as appropriate policy support to make biomass energy projects a cost-competitive source of stable, alternative energy for remote rural tribal communities that can provide greater tribal sovereignty and economic opportunities.


Author(s):  
Almas Heshmati ◽  
Shahrouz Abolhosseini

This chapter reviews relevant literature on the current state and effectiveness of developing renewable energy on energy security in general, and on energy security in the European Union (EU) in particular. The chapter elaborates on primary energy import sources, possible alternatives, and how energy security is affected by the sources of supply. It also gives an analysis of the effects of the Ukrainian crisis, the isolation of Iran on diversification sources, and on European energy security. It examines EU’s energy policy, analyses the best motivation for a new energy policy direction within Europe, and suggests alternative solutions for enhanced energy supply security. The aim is to suggest suitable solutions for energy security in Europe through energy supply diversification. Supply diversification includes alternative energy corridors for reducing dependency on Russia as a supplier and enhancing the power generated by renewable energy sources under the European Union 2020 strategy.


2018 ◽  
Vol 7 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Maryudi Maryudi ◽  
Agus Aktawan ◽  
Siti Salamah

National energy demand has been fulfilled by non-renewable energy sources, such as natural gas, petroleum, coal and so on. However, non-renewable energy reserves deplete increasingly which can cause an energy crisis. Conversion of biomass into energy becomes one of the solutions to overcome it. Indonesia has an enormous biomass potential especially from sugarcane plantation. Sugarcane plantations produce waste of bagasse abundantly. Commonly bagasse is utilized as energy source by conventional combustion.  This research studies the utilization of bagasse as energy source by gasification technology to produce gas fuel. The gasification model used in this research is downdraft gasifier equipped with cyclone to separate gas with solid or liquid gasification products. The result has shown  that gasification of bagasse has produced flammable syngas. The increase of bagasse weight increases the amount of syngas of gasification process. Carbon monoxide is the greatest content of syngas, while a few amount of H2, CH4 are also detected. Bagasse through gasification process is very potential source of alternative energy, since it is derived from waste and a cheap material.


2020 ◽  
Vol 12 (16) ◽  
pp. 6312
Author(s):  
Rana Pratap Singh ◽  
Hans Peter Nachtnebel ◽  
Nadejda Komendantova

Nepal could rely on its huge renewable energy potentials to meet its energy demand sustainably. Also, renewable energy sources are considered by several national policy makers and international organizations as an engine for socio-economic development of the country, which can provide access to electricity to everybody and stimulate economic activity and economic growth. Several efforts were taken by the national government to stimulate deployment of renewable energy electricity generation capacities. However, the country is still not able to cover its energy needs with renewable energy despite decades of efforts for their deployment. The assumption of this research was that uncertainty in energy policy and planning gaps in Nepal are connected with the dominance of a limited number of discourses and ignorance of other voices which might be helpful. Nowadays, evidence exists that a multi-stakeholder and multi-sector perspective is extremely important for sustainable development. We provide evaluation of various perspectives, including technical, social, economic, environmental, and political. We collect empirical data in frames of a comprehensive stakeholders’ process in Nepal. The stakeholders’ preferences are analyzed through various methods of decision support sciences such as multi criteria decision analysis. To fast track hydropower development, the government has classified them into five categories based on their generation capacity. Assessment of each category and their collective comparison on multiperspectives has never been tried. Hence, such an assessment leading towards their prioritization is the objective of the study. It may help to identify a suitable strategy or policy to maximize national benefits. The study carried within the framework of five alternatives (categories) of hydropower schemes and nine different hydropower perspectives applicable in Nepalese context. The scoring method based is on secondary source evidence is applied for assessment. The study ranks medium schemes (25 to 100 MW) as best in Nepalese context.


2020 ◽  
Vol 12 (19) ◽  
pp. 8199 ◽  
Author(s):  
Saheed Lekan Gbadamosi ◽  
Nnamdi I. Nwulu

Renewable energy sources (RES) are seen as potential alternative energy sources for rural communities to meet energy demand where electricity supply is inaccessible. Wind and Photo-Voltaic (PV) power is seen as mature and sustainable alternatives for rural electrification. This paper discusses the optimal power dispatch for hybrid combined heat and power (CHP), wind, PV and battery systems with a view to determining the operation of the hybrid system for farming applications. This is accomplished by considering the basic power system probability concepts to assess the performance of the reliability indices. The proposed mathematical model seeks to minimize the system operation costs from CHP. The developed model was validated on five case studies with the same load profile, solar radiation, wind speed and CHP generating unit parameters and solved using a CPLEX solver embedded in Algebraic Modelling Language. The sensitivity analysis performed indicates that the hybrid system achieved a higher reliability as compared to other case studies. The result shows 48% of energy cost reduction is achievable when considering the proposed hybrid CHP, wind, PV and battery system as compared to energy supply via CHP.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 176 ◽  
Author(s):  
Sarvar Hussain Nengroo ◽  
Muhammad Umair Ali ◽  
Amad Zafar ◽  
Sadam Hussain ◽  
Tahir Murtaza ◽  
...  

The growing human population and the increasing energy needs have produced a serious energy crisis, which has stimulated researchers to look for alternative energy sources. The diffusion of small-scale renewable distributed generations (DG) with micro-grids can be a promising solution to meet the environmental obligations. The uncertainty and sporadic nature of renewable energy sources (RES) is the main obstacle to their use as autonomous energy sources. In order to overcome this, a storage system is required. This paper proposes an optimized strategy for a hybrid photovoltaic (PV) and battery storage system (BSS) connected to a low-voltage grid. In this study, a cost function is formulated to minimize the net cost of electricity purchased from the grid. The charging and discharging of the battery are operated optimally to minimize the defined cost function. Half-hourly electricity consumer load data and solar irradiance data collected from the United Kingdom (UK) for a whole year are utilized in the proposed methodology. Five cases are discussed for a comparative cost analysis of the electricity imported and exported. The proposed scheme provides a techno-economic analysis of the combination of a BSS with a low-voltage grid, benefitting from the feed-in tariff (FIT) scheme.


2015 ◽  
Vol 10 (1) ◽  
pp. 34-52 ◽  
Author(s):  
Roxana Clodnițchi ◽  
Alexandra Cătălina Chinie

Abstract When talking about the future of Europe we also think about alternative energy sources. It is up to national governments to decide how to encourage investments in this field in order to contribute to the 20-20-20 EU-objective. Until the network delivery cost for electricity produced from renewable sources will be comparable to the cost for energy from traditional sources ("grid parity"), the development of businesses and markets for electricity from renewable sources is going to be driven by support schemes. The state of the grids and the facility of grid-access constitute another two key factors influencing the development of this sector. Last but not least, the question of policy consistency is raised within the business community. Over the past years some support schemes have proved to be more effective than others, and grid conditions have also evolved. Policies supporting the development of renewables also changed at EU-level and at national levels. Based on statistics, scientific literature and the feedback of the business community, this study aims to analyse the development of renewable energy sectors in the European Union by comparing Germany’s and Romania’s experience. Also this study describes the current and expected future market situation in these countries relying on data gained from questionnaires and interviews with specialists in the renewable field.


2016 ◽  
Vol 22 (4) ◽  
pp. 271 ◽  
Author(s):  
Jaroslav Jerz ◽  
František Simančík ◽  
Jaroslav Kováčik ◽  
Peter Oslanec Sr.

The high energy efficiency of buildings can be achieved if energy needs are almost entirely covered by the supply of renewable energy sources obtained directly on the building or in its immediate vicinity. The technology providing efficient storage of the heat at a time of excessive sunlight is necessary if a returns of investment for the construction of small houses with zero energy balance should be less than 10 years. The regular alternation of day and night cycle resulting in continuously changing amount of sunshine falling on the building roof causes even though a small but very well usable potential. The concept presented in this contribution is based on the storage of energy obtained through the aluminium foam roof and facade cladding, which are capable of absorbing the desired, or even take away the excess energy to the surroundings if necessary. The energy effectively generated by this way is by means of piping system distributed by heating liquid medium/coolant to interior ceiling heat exchangers made of aluminium foam enabling due to filling by <span style="text-decoration: underline;">P</span>hase <span style="text-decoration: underline;">C</span>hange <span style="text-decoration: underline;">M</span>aterial<span style="text-decoration: underline;">s</span> (PCMs) to store the energy required for heating/cooling for a period of at least several hours. This progressive technology, therefore, contributes significantly to reducing of energy demand and thus also the prices of future not only large buildings but also small family houses that are able to achieve the optimal thermal comfort by extremely low costs. Possibility to manufacture facade, as well as the interior panels of aluminium foam, is a good prerequisite for ensuring that these structural components could be in the nearest future made from fully recyclable aluminium alloys. This fact indicates large potential chance for long-term sustainable further development of above-mentioned advanced technologies.


Author(s):  
Steven Gow Calabresi

This second volume builds on the story of Volume I as to the origins and growth of judicial review in the key G-20 constitutional democracies, which include the United States, the United Kingdom, France, Germany, Japan, Italy, India, Canada, Australia, South Korea, Brazil, South Africa, Indonesia, Mexico, and the European Union. In addition to discussing the judicial review systems of the major civil law countries in this Volume, I also discuss the birth and growth in power of the European Court of Justice and of the European Court of Human Rights, both of which hear cases ffrom common law as well as civil law countries. This Volume considers the four major theories that help to explain the origins of judicial review, which I discussed as to common law countries. Volume II identifies which theories of the origination and growth in power of judicial review apply best in the various countries discussed. Volume II considers not only what gives rise to judicial review originally, but also what leads to the growth of judicial power over time. My positive account of what causes the birth and growth of judicial review in so many very different countries over such a long period of time may have normative implications for those constitution writers who want a strong form of judicial review to come into being.


Sign in / Sign up

Export Citation Format

Share Document