scholarly journals Influence of mechanical activation on synthesis of zinc metatitanate

2005 ◽  
Vol 37 (2) ◽  
pp. 115-122 ◽  
Author(s):  
Nebojsa Labus ◽  
Nina Obradovic ◽  
Tatjana Sreckovic ◽  
V. Mitic ◽  
Momcilo Ristic

Investigations of a ZnO-TiO2 binary oxide mixture during mechanical treatment were mainly focused on obtaining orthotitanate Zn2TiO4 with a spinel structure. Due to the specific way of energy transfer during mechanical treatment using a high-energy ball mill, the system passes through low temperature ZnTiO3 metatitanate phase formation. Mechanical activation was performed on an equimolar ratio mixture of ZnO and TiO2. The anatase phase was previously submitted to heat treatment for achieving a starting mixture rich in a rutile phase. Milling conditions were preset for observing the formation of a low temperature ZnTiO3 phase with a perovskite structure. The powder microstructure was characterized using scanning electron microscopy. A nitrogen gas sorption analyzer with the BET method was used to determine the specific surface area and porosity, indicating changes of powder sample properties during mechanical activation. Also, X ray powder diffractometry was applied to obtain the phase composition. Powders were then pressed into pellets and their compressibility was observed through density changes. According to microstructures obtained by scanning electron microscopy analysis, the system underwent a primary and secondary agglomeration process. Specific surface area measurements supported that conclusion. Compressibility investigations established the difference between compressibility of the non-activated mixture and activated powders. X-ray diffraction analysis revealed that a perovskite structure forms simultaneously with a spinel phase during the process of mechanical activation.

1998 ◽  
Vol 13 (8) ◽  
pp. 2218-2223 ◽  
Author(s):  
S. Ardizzone ◽  
C. L. Bianchi ◽  
B. Vercelli

The present paper reports data concerning magnesia samples obtained by calcination of different precursor salts at different increasing temperatures (873–1253 K). The oxides are characterized by x- ray diffraction, scanning electron microscopy, and N2 adsorption at subcritical temperatures. The samples appear to be composed, at any temperature, of pure periclase with a degree of crystallinity which increases with the temperature of calcination. Morphologically, the products have the shape either of lamellas or of cubes of variable dimensions, depending on the nature and route of preparation of the precursor salts. The variation of the specific surface area and the degree of porosity with the nature of the precursors and the temperature is discussed.


2019 ◽  
Vol 6 (1) ◽  
pp. 152-162 ◽  
Author(s):  
Claire Dazon ◽  
Olivier Witschger ◽  
Sébastien Bau ◽  
Vanessa Fierro ◽  
Philip L. Llewellyn

This work shows that the volume specific surface area could be a reliable criterion for nanomaterial identification.


2012 ◽  
Vol 198-199 ◽  
pp. 99-102
Author(s):  
Qing Gang Kong ◽  
Hai Yan Qian

Magnesium nitrate was used as additive for synthesis of Mg(OH)2 (MH) nanoparticles at low temperature (70°C). Mg(OH)2 nanoparticles have platelet-like structure and approximately 40-60nm in thicknesses. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were applied to characterize the crystal phase. The supersaturation degree of solution effects the size and morphology of MH nanoparticles.


2019 ◽  
Vol 18 (03n04) ◽  
pp. 1940067
Author(s):  
P. Vitiaz ◽  
N. Lyakhov ◽  
T. Grigoreva ◽  
E. Pavlov

The interaction between a solid inert metal Ir and an active liquid metal Ga during mechanical activation in a high-energy planetary mill is studied by X-ray diffraction and scanning electron microscopy with high-resolution energy dispersive X-ray microanalysis. The effect of mechanical activation on the formation of GaxIry intermetallic compounds and GaxIry/Ir composites and their solubility in acids was investigated. The subsequent extraction of Ga from intermetallic compounds and composites in the mixture of concentrated acids [Formula: see text] makes it possible to produce nanoscale Ir.


2015 ◽  
Vol 1088 ◽  
pp. 81-85 ◽  
Author(s):  
T.N. Myasoedova ◽  
Victor V. Petrov ◽  
Nina K. Plugotarenko ◽  
Dmitriy V. Sergeenko ◽  
Galina Yalovega ◽  
...  

Thin SiO2ZrO2films were prepared, up to 0.2 μm thick, by means of the sol–gel technology and characterized by a Scanning electron microscopy and X-ray diffraction. It is shown the presence of monoclinic, cubic and tetragonal phases of ZrO2in the SiO2matrix. The crystallites sizes depend on the annealing temperature of the film and amount to 35 and 56 nm for the films annealed at 773 and 973 K, respectively. The films resistance is rather sensitive to the presence of NO2and O3impurity in air at lower operating temperatures in the range of 30-60°C.


2014 ◽  
Vol 998-999 ◽  
pp. 1425-1428 ◽  
Author(s):  
Wen Ya Mei ◽  
Teng Hong Hui

Brewing spent diatomite (BSDT), a beer industrial by-product, was regenerated with calcination. The characteristics of regenerated BSDT were detected by X-ray diffraction, X-ray fluorescence, Fourier-transform infrared, and scanning electron microscopy. The results showed that the mineralization of the surface adsorbate and the remarkable increase in the Si-OH decreased the pHpzc value from 7.6 to 5.2 and increased the surface area from 36 m2/g to 52 m2/g after calcination at 800 °C. The results show that the regenerated BSTD could be employed as an efficient adsorbent for the recycling of BSDT.


Clay Minerals ◽  
1988 ◽  
Vol 23 (4) ◽  
pp. 399-410 ◽  
Author(s):  
J. L. Pérez-Rodríguez ◽  
L. Madrid Sánchez del Villar ◽  
P.J. Sánchez-Soto

AbstractDry grinding of pyrophyllite (Hillsboro, USA) has been studied by X-ray diffraction (XRD), specific surface area measurements (BET) and scanning electron microscopy (SEM). At the beginning of the grinding process, some effects such as delamination, gliding and folding of the layers, and decrease in particle size were detected by SEM and XRD, resulting in a large increase in specific surface area, up to a maximum of ∼60 m2·g−1. Marked changes in the structure take place between 30 and 32 mins grinding. Longer grinding times increase the degree of disorder and SEM and specific surface area data suggest that aggregation occurs. XRD results indicate that some residual order persists in the degraded structure.


1998 ◽  
Vol 37 (S2) ◽  
pp. 36 ◽  
Author(s):  
Masataka Ohkubo ◽  
Isao Sakamoto ◽  
Nobuyuki Hayashi ◽  
Jens Martin ◽  
Friedhelm Panteleit ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 109-111
Author(s):  
Zulfiya Khayrullina ◽  
Kanaan R. Ahmed ◽  
Samara Kambarova ◽  
Marat Agliullin

ABSTRACT:The authors have proposed a method for the selective crystallization of a SAPO-11 silicoaluminophosphate molecular sieve with a micro-mesoporous structure. It has been shown that crystallization of a silicoaluminophosphate gel, in the preparation of which its isopropoxide is used as a source of aluminum, makes it possible to obtain a SAPO-11 molecular sieve with a specific surface area of ​​~ 207 m2 / g, a volume of micro- and mesopores of ~ 0.08 and 0.09 cm3 / g. , respectively. Using scanning electron microscopy, it was demonstrated that the crystals of the material are pseudospherical particles ~ 8-10 microns in size, consisting of aggregates of nanocrystals ~ 100-200 nm in size.


2002 ◽  
Vol 34 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Vera Pavlovic ◽  
Biljana Stojanovic ◽  
Vladimir Pavlovic ◽  
Ljiljana Zivkovic ◽  
Momcilo Ristic

In this article low temperature sintering of mechanically activated BaCO3-TiO2 system was studied. A stoichiometric mixture of BaCO3 and TiO2 powders was mechanically activated in a high-energy vibromill for 0, 30, 90 and 180 min, calcined at 800oC for 1 h and reaction sintered at 1100oC and 1200oC for 2 h (heating rate of 10oC/min). Phase compositions and crystallographic data of initial, activated, calcinated and sintered specimens were obtained by the XRPD method. It was noticed that mechanical activation enhanced and lowered the temperature of the formation of tetragonal BaTiO3. Scanning electron microscopy was used to study and characterize microstructures of the samples.


Sign in / Sign up

Export Citation Format

Share Document