scholarly journals Sintering behavior of Y2O3 doped Bi2O3 ceramics

2007 ◽  
Vol 39 (3) ◽  
pp. 215-221 ◽  
Author(s):  
M. Alizadeh ◽  
A. Maghsoudipour ◽  
F. Moztarzadeh ◽  
K. Ahmadi ◽  
M. Saremi

Influence of sintering temperature and soaking time on densification of Bi2O3 samples doped with 25%mol Y2O3 was investigated by shrinkage and relative density measurements. Samples were sintered in air at different temperatures in the range of 800 to 1000?C for 24 hr. The results showed that samples sintered at 950?C have the maximum relative density. Several samples were sintered at 950?C for duration of 0 to 36 hr in order to evaluate the effect of soaking time on densification of samples. It was found that the samples were sintered at 950?C for 36hr had higher relative density than others did for smaller time duration X-ray diffraction (XRD) analyses detected ? -Bi2O3 as the sole stable phase in all samples. Scanning Electron Microscopy (SEM) investigation of fractured surface of the samples showed that porosities decrease by increasing of sintering temperature and grow by further increasing of temperature.

2018 ◽  
Vol 24 (4) ◽  
pp. 273 ◽  
Author(s):  
Khanh Quoc Dang ◽  
Quang Anh Hoang ◽  
Hiep Van Tran ◽  
Minh Cong Nguyen ◽  
Hao Van Pham ◽  
...  

In the present work, FeMn13-40 wt.% TiC composite was fabricated by Pulsed Electric Current Sintering (PECS) process at different temperatures between 990 and 1020<sup>o</sup>C under a pressure of 60 MPa with a holding time of 5 min in the vacuum. Phases identification was done using the X-ray diffraction. The relative density, microstructure and hardness of the samples were characterized. The results showed that the relative density of FeMn13-TiC composite increased with the increase of sintering temperature. The highest relative density (96.19%) and the hardness (70.54 HRC) of the sample were achieved by PECS process, namely sintering at the temperature of 1020<sup>o</sup>C under the applied pressure of 60 MPa for 5 min.


2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1187-1193 ◽  
Author(s):  
Bin Li Jiang ◽  
Zi Li Kou ◽  
De Jiang Ma ◽  
Yong Kun Wang ◽  
Chun Xia Li ◽  
...  

In the present study, we present a novel method to sinter Cr3C2 powders under high pressure without any addittives. The sintering Cr3C2 samples were charaterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), relative density measurements, Vicker’s hardness tests and Fracture toughness tests. The reasults show that Cr3C2 powders could be sintered to be bulk under the conditions of 3-5 GPa, 800-1200 °C and the heat preservation for 15 min. Moreover, the sintering body of Cr3C2 compound with the relative density of 99.84% by simultaneously tuning the pressure-temperature conditions exhibited excellent mechanical properties: a Vickers hardness of 20.3 GPa and a fracture toughness of ~8.9 MPam1/2. These properties were much higher than that by using the previous methods. The temperature condition obtained good mechanical properties in the experiment was about 1/3 lower than that using any other methods owing to the high pressure.


2008 ◽  
Vol 23 (9) ◽  
pp. 2366-2372 ◽  
Author(s):  
Yongjun Li ◽  
Sicheng Li ◽  
Ran Lv ◽  
Jiaqian Qin ◽  
Jian Zhang ◽  
...  

Cubic boron nitride (cBN) composites starting with cBN–Al mixtures were sintered on WC-16 wt% Co substrates under static high pressure of 5.0 GPa and at temperatures of 800–1400 °C for 30 min. Vickers hardness of the sintered samples increased with increasing cBN content, and the highest hardness of 32.7 GPa was achieved for the cBN–5 wt% Al specimens sintered at 1400 °C. The reactions between cBN and Al started to occur at about 900 °C, and the reaction products strongly depended on the Al content, sintering temperature, and Co diffusion from the substrates according to the x-ray diffraction (XRD) observations. The high pressure and high temperature in situ resistance measurement indicated that the reactions between cBN and Al could be completed in about 90 s when the temperature was higher than ∼1200 °C at high pressure. The cBN composite sintered at 1200 °C from a cBN–15 wt% Al mixture showed the best cutting performance.


2012 ◽  
Vol 512-515 ◽  
pp. 1203-1206
Author(s):  
Yun Hui Xu ◽  
Xiao Hong Zhu ◽  
Qiang Zhang ◽  
Jian Guo Zhu ◽  
Ding Quan Xiao

Bismuth zinc niobate [(Bi1.5Zn0.5)(Nb1.5Zn0.5)O7, abbreviated as BZN] ceramics are receiving increasing attention due to their excellent dielectric properties in the microwave frequency range. This work is aimed at improving the fabrication technology of BZN ceramics. BZN ceramic specimens were prepared using the general electronic ceramic technique including milling, calcining, crushing, pressing, and sintering. Different sintering temperatures in the range of 950-1080°C were used to study how sintering temperature affects the structure and dielectric properties of BZN ceramics. The crystallinity and microstructure of the BZN ceramics, which were measured respectively by X-ray diffraction and scanning electron microscopy, were improved with increasing of the sintering temperature. The frequency dependence of the dielectric constant and loss tangent was measured at room temperature from 1 kHz to 1 MHz. The dielectric properties of the specimen sintered at 1050°C were found to be the best, for which the relative permittivity (εr) and the loss tangent (tanδ) are around 146 and 0.005, respectively. It was also foεund that when the sintering temperature was higher than 1000°C, the εrand the tanδ of BZN ceramics sintered at different temperatures were similar. As a result, 1000°C may be an appropriate sintering temperature for BZN ceramics.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012054
Author(s):  
Siti Nur Hazwani Yunus ◽  
Khor Shing Fhan ◽  
Banjuraizah Johar ◽  
Nur Maizatul Shima Adzali ◽  
Nur Hazlinda Jakfar ◽  
...  

Abstract In this paper, tricalcium disilicate was formed from dicalcium silicate compound powder, synthesised via a mechanochemical technique using a stoichiometric 2CaO:1SiO2. Compound CaO and SiO2 were derived from the bio-waste of eggshell and rice husk at the calcination temperature of 900°C and 800°C, respectively. The dicalcium disilicate powder was sintered for 2 hours at different temperatures ranging from 1150°C to 1350°C. Using X-ray diffraction with Rietveld analysis, it was found that the amount of tricalcium disilicate with monoclinic (beta) crystal structure increases on sintering temperature at the expense of dicalcium silicate. The complete formation of single-phase tricalcium disilicate began at a sintering temperature of 1300°C. The effect of sintering temperatures on the crystallisation and phase transition of dicalcium silicate is reported. The size of crystallites depends on the sintering temperature. The finding of this study rebound to the benefit of society by reducing the risk-off pollution cause by accessive redundant bio-waste eggshell and rice husk and also reduced the amount of CaO and SiO2 used in the fabrication of Ca3Si2O7.


2018 ◽  
Vol 53 (2) ◽  
pp. 111-116 ◽  
Author(s):  
N Sultana ◽  
K Bilkis ◽  
R Azad ◽  
MR Qadir ◽  
MA Gafur ◽  
...  

In this study, yttria stabilized tetragonal zirconia (YSTZ) ceramics were prepared and were sintered at different temperatures to find out the optimum sintering temperature for their better tetragonality and mechanical properties for their application as optical ferrule. Vicker’s hardness was performed by micro hardness tester and it was found to increase with the increase of sintering temperature to a maximum value, then it was decreased with higher sintering temperature. Water absorptivity and porosity were also seen to decrease as the densities of the specimens were increased. X-ray diffraction was employed to determine crystal structure of sintered samples. Surface morphology of the sintered samples was examined through field emission scanning electron microscope.Bangladesh J. Sci. Ind. Res.53(2), 111-116, 2018


2014 ◽  
Vol 492 ◽  
pp. 253-257 ◽  
Author(s):  
Lei Wang ◽  
Zhi Dong Li ◽  
Yin Liang ◽  
Kun Yu Zhao

Polycrystalline ferrites powders samples: Ni0.6Cu0.4Fe2O4 were synthesized by using metal nitrates and freshly extracted egg white, all the samples were sintered at 500°C,520°C, 550°C, 580°C and 600°C for 3h,6h,9h, respectively. The better synthesis conditions were investigated by analyzed the effect of sintering temperature and soaking time on structural, grain size and magnetic properties using X-ray diffraction (XRD), laser grain size analyzer (LPSA) and vibrating sample magnetometer (VSM). From the above analysis, the better synthesis conditions is set two insulation work steps: First at 240°C for 1h, then heating to 440°C for 2h, finally sintering at between 520°C and 550°C for 6h.


2014 ◽  
Vol 975 ◽  
pp. 3-8 ◽  
Author(s):  
Javier Camargo ◽  
Leandro Ramajo ◽  
Fernando Rubio-Marcos ◽  
Miriam Castro

Different processing conditions and the effect of secondary phases on ferroelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3(BNKT) are studied. Ceramic powders are prepared by solid state reaction and different sintering temperatures (temperatures between 1075 and 1150°C) are analyzed. Finally, samples are characterized by X-ray diffraction, Raman microspectroscopy, Scanning Electron Microscopy, impedance spectroscopy, and density measurements. Through XRD patterns, the perovskite structure is stabilized; together with small peaks corresponding to a secondary phase associated with K2-xNaxTi6O13phase. Moreover, the content of the secondary phase, d33piezoelectric constant and dielectric properties increase with sintering temperature.


2007 ◽  
Vol 336-338 ◽  
pp. 958-960
Author(s):  
Yang Song ◽  
Chang An Wang ◽  
Chun Qing Peng ◽  
Yong Huang

High-pure bulk Ti3SiC2 samples were fabricated by directly hot-pressing (HP) high-pure Ti3SiC2 powder without any additives at 1200°C to 1500°C for 0.5–2 hours in flow argon atmosphere. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used for phase identification and microstructure evaluation. The fabricated Ti3SiC2 materials have relative high density with high purity, flexural strength of 500-700MPa and fracture toughness of 9-12MPa·m1/2. The influence of sintering temperature and soaking time on the mechanical properties of Ti3SiC2 materials was discussed. The sintering mechanism for Ti3SiC2 powder without any additives was considered to be related with the fragile-ductile transformation of Ti3SiC2 at 1100°C.


Sign in / Sign up

Export Citation Format

Share Document