scholarly journals Effects of different sintering temperatures on thermal, physical, and morphological of SiO2-Na2O-CaO-P2O5 based glass-ceramic system from vitreous and ceramic wastes

2019 ◽  
Vol 51 (4) ◽  
pp. 377-387
Author(s):  
Nur Pallan ◽  
Khamirul Matori ◽  
Mansor Hashim ◽  
Raba’ah Azis ◽  
Norhazlin Zainuddin ◽  
...  

This research involved comprehensive studies on thermal, physical, and morphological properties of SiO2-Na2O-CaO-P2O5 (SNCP) glass-ceramic at various sintering temperatures. The study in SNCP glass-ceramic using soda-lime-silica (SLS) wastes glass and clam shell (CS) wastes as the main raw of materials via conventional melt-quenching technique and solid state sintering are interesting and challenging by considering the research using waste materials to fabricate novel SNCP glass-ceramic. The main peaks, Na3PO4 and Ca3Na6Si6O18 were assigned to high crystallization temperature (Tc) at 650-950?C. The density of samples increases at 550-750?C and decreases at 850-950?C due to the increase of sample thickness and higher specific volume at high sintering temperature. FESEM micrograph showed that existed porous increased at sintering temperature 850-950?C contributes effect to low densification of the sample.

2020 ◽  
Vol 52 (3) ◽  
pp. 269-281
Author(s):  
Suhail Jaafar ◽  
Mohd Zaid ◽  
Khamirul Matori ◽  
Mohd Ghazali ◽  
Mohd Shofri ◽  
...  

This study aims to fabricate low-cost foam glass-ceramic using soda-lime-silica (SLS) glass waste and clamshells (CS) as foaming agent in content between 1 and 12 wt.% by conventional powder processing method. The samples were undergoing sintering process between 700 and 1000?C with holding time of 30 minutes and characterized according to the physical and structural properties. Samples containing 3 wt.% CS treated at 800?C show the greatest size of porosity. As the sintering temperature increased, the samples tend to become less dense. However, for the samples sintered at 900 and 1000?C, the trend of the density changes because of the excess CO2 gases generated during the heat treatment process promotes an increase in internal pressure, which results in the rupture of the pore walls. For linear expansion, for samples with a sintering temperature of 800?C and higher, the increment of the temperature will lead to the decrement of linear expansion (%). As the sintering temperature increases from 700 to 800?C, the water absorption (%) increases. However, the percentage of water absorption decreases with the further increment of sintering temperature. The XRD characterization showed the formation of wollastonite phase (CaSiO3) and further revealed the formation of greater peaks of CaSiO3 at the higher sintering temperatures. The results of compressive mechanical strength between 0.15 and 1.50 MPa indicate that the obtained glass-ceramic foams have potential for building material applications.


2019 ◽  
Vol 44 (2) ◽  
pp. 200-209 ◽  
Author(s):  
F Murillo-Gómez ◽  
RB Wanderley ◽  
MF De Goes

SUMMARY The aim of this study was to determine whether using a silane-containing universal adhesive as a silane primer in glass-ceramic/resin cement systems affects biaxial flexural strength (BFS) and bonded interface integrity after loading. Glass-ceramic (IPS e.max CAD, Ivoclar/Vivadent, Schaan, Liechtenstein) disc-shaped specimens (6.5±0.1mm in diameter, 0.5±0.1mm thick) were etched with 5% hydrofluoric acid (HF) for 20 seconds and divided into four groups of 30 specimens, to be treated as follows: 1) One bottle silane primer (RCP); 2) Separate application of silane and adhesive (RCP+SB); 3) Silane-containing universal adhesive (SBU); 4) No treatment (C). After silanization, all specimens were resin cement– coated and polymerized for 40 seconds. Each specimen layer was measured, as well as each assembly's thickness, using a digital caliper and scanning electron microscope (SEM). Specimens were stored for 24 hours and submitted to a BFS test (1.27 mm/min). BFS values were calculated using the bilayer disc-specimen solution. Bonded interfaces were analyzed on fractured fragments using SEM. One-way ANOVA and Tukey tests (α=0.05) were applied, as well as the Weibull analysis. Factor “silane treatment” was statistically significant (p<0.0001). RCP+SB (372.2±29.4 MPa) and RCP (364.2±29.5 MPa) produced significantly higher BFS than did the C (320.7±36.3 MPa) or SBU (338.0±27.1 MPa) groups. No differences were found in the Weibull modulus (m: RCP: 10.1-17.3; RCP+SB: 10.1-17.0; SBU: 12.3-22.4; C: 7.4-12.9). Bonded interface analysis exhibited ceramic-cement separation (SBU, C) and voids within the resin cement layer (all groups). Neither the ceramic/cement system's BFS nor its bonded interface stability were improved by SBU after loading.


2008 ◽  
Vol 368-372 ◽  
pp. 1422-1425 ◽  
Author(s):  
An Guo Lu ◽  
Tai Qiu

Calcium borosilicate (CaO-B2O3-SiO2, CBS) glass based glass-ceramic composites were prepared by introducing borosilicate glass. The effects of borosilicate glass and firing temperature on the microstructure and properties of the glass-ceramic composites were investigated. The results showed that the composites containing 0~40% (in mass fraction, the same below) borosilicate glass can be sintered at 850°C. The dielectric constant (εr) decreases with the increase of borosilicate glass content and can be adjusted in the range of 5.6~6.6. The coefficient of thermal expansion (CTE) increases with the increase of borosilicate glass content. Increasing sintering temperature favors the precipitations of crystal phases, which have lower εr than CBS glass, resulting in the decrease of εr for the composites.


2012 ◽  
Vol 6 (4) ◽  
pp. 183-192 ◽  
Author(s):  
Fatma Margha ◽  
Amr Abdelghany

Ternary borate glasses from the system Na2O?CaO?B2O3 together with soda-lime-borate samples containing 5 wt.% of MgO, Al2O3, SiO2 or P2O5 were prepared. The obtained glasses were converted to their glass-ceramic derivatives by controlled heat treatment. X-ray diffraction was employed to investigate the separated crys?talline phases in glass-ceramics after heat treatment of the glassy samples. The glasses and corresponding glass-ceramics after immersion in water or diluted phosphate solution for extended times were characterized by the grain method (adopted by several authors and recommended by ASTM) and Fourier-transform infrared spectra to justify the formation of hydroxyapatite as an indication of the bone bonding ability. The influence of glass composition on bioactivity potential was discussed too.


2018 ◽  
Vol 96 (7) ◽  
pp. 804-809 ◽  
Author(s):  
Harun Güney ◽  
Demet İskenderoğlu

The undoped and 1%, 2%, and 3% Cd-doped MgO nanostructures were grown by SILAR method on the soda lime glass substrate. X-ray diffractometer (XRD), ultraviolet–visible spectrometer, scanning electron microscope, photoluminescence (PL), and X-ray photoelectron spectroscopy measurements were taken to investigate Cd doping effects on the structural, optical, and morphological properties of MgO nanostructures. XRD measurements show that the samples have cubic structure and planes of (200), (220) of MgO and (111), (200), and (220) of CdO. It was observed that band gaps increase with rising Cd doping rate in MgO thin film. The surface morphology of samples demonstrates that MgO nanostructures have been affected by the Cd doping. PL measurements show that undoped and Cd-doped MgO thin films can radiate in the visible emission region.


2021 ◽  
Vol 1039 ◽  
pp. 398-405
Author(s):  
Munira M.J. Al-Haji ◽  
Raad M.S. Al-Haddad

Bulk Germanium monosulphide (GeS) alloy was synthesized using the usual melt-quenching technique. Its grains were used as the source material to deposit thin films by vacuum thermal evaporation. Thin-films samples were doped with 1, 2, and 3 at.% indium by thermal co-evaporation and annealed in a vacuum at temperatures 373, 473 and 550 K for an hour. Compositional, structural, and morphological properties of the bulk GeS alloy and its thin films were investigated by Energy Dispersive X-Ray Spectroscopy (EDS), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) techniques. The analyses verified the stoichiometry (GeS) of the starting material in the prepared thin films. They also revealed that the thin films under study are amorphous, homogeneous, without any cracks deposited uniformly on the glass substrate with thickness 650 to 700 nm.


2020 ◽  
Author(s):  
Husniyah Aliyah Lutpi ◽  
Hasmaliza Mohamad ◽  
Tuti Katrina Abdullah

Abstract The present work aims to investigate the effects of isothermal treatment on the structural, microstructure and physical properties of Li2O-Al2O3-SiO2 glass-ceramic. Sintering temperature plays a major role in producing the desired lithium aluminosilicate (LAS) glass-ceramic crystalline phases. This work also aims to achieve a low thermal expansion coefficient β-spodumene (LiAlSi2O6) crystalline phase with improved density and lower porosity, which can be useful for the applications with thermal shock properties. The LAS glass-ceramic was fabricated by the melt-quenching technique at 1550 °C for 5 h before being isothermally sintered at an elevated temperature of 900 to 1200 °C for 30 min. The evolution of LAS glass-ceramic crystalline phases was identified using differential thermal analysis and the β-spodumene exothermic peak appeared at 999 °C. Based on the X-ray diffraction results, the complete transformation of β-spodumene from high-quartz solid solution (β-quartz) occurred at 1000 °C. However, the sintering temperature did not change the crystalline phase when sintered above 1000 °C, but the lattice parameter of the crystal structure was slightly altered. Moreover, it was observed that the LAS glass-ceramic grain size increased with temperature, whereby the smallest average grain size recorded (0.61 µm) for LAS glass-ceramic sintered at 1100 °C. Meanwhile, the fully densified LAS glass-ceramic at 1100 ° C was measured at 2.47 g/cm3 with 0.52% porosity. The isothermal treatment at elevated temperature indicated that sintering at 1100 °C provided a denser, less porous, and small average grain size which is preferred for thermal shock resistance applications.


Sign in / Sign up

Export Citation Format

Share Document