scholarly journals Electricity production from biogas in Serbia: Assessment of emissions reduction

2016 ◽  
Vol 20 (4) ◽  
pp. 1333-1344
Author(s):  
Slobodan Cvetkovic ◽  
Tatjana Kaludjerovic-Radoicic ◽  
Rastislav Kragic ◽  
Mirjana Kijevcanin

Biogas represents a promising source for the production of clean energy. The objective of this paper was to quantify the potential for the reduction of emissions to the environment during the production of electricity from biogas in comparison with environmental effects of the production of the same amount of electricity from fossil resources (coal from Kolubara basin and natural gas). Basis for comparison of environmental impacts in this work was the annual production of electricity in biogas plants of the total capacity of 80 MW. This study has shown that the annual production of electricity from biogas power plants of 80 MW results in: substitution of up to 840 kt of coal from Kolubara basin and 123.2 million m3 of natural gas; reduction in emissions of greenhouse gases in the range of 491.16 kt - 604.97 kt CO2-eq, depending on the energy efficiency of the process of electricity production from biogas; reduction in emissions of greenhouse gases up to 92.37 kt CO2-eq compared to the use of natural gas for electricity generation.

Author(s):  
Rene Nsanzineza ◽  
Jana Milford

Across the U.S., electricity production from coal-fired generation is declining while use of renewables and natural gas is increasing. This trend is expected to continue in the future. In the Rocky Mountain region, this shift is expected to reduce emissions from electricity production while increasing emissions from the production and processing of oil and gas, with significant implications for the level, location, and timing of the air pollution emissions that are associated with these activities. In turn, these emissions changes will affect air quality in the region, with impacts on ground-level ozone of particular concern. This study aims to evaluate the tradeoffs in emissions from both power plants and oil and gas basins resulting from contrasting scenarios for shifts in electricity and oil and gas production through the year 2030. The study also incorporates federal and state-level regulations for CH4, NOx, and VOC emissions sources. These regulations are expected to produce significant emissions reductions relative to baseline projections, especially in the oil and gas production sector. Annual emissions from electricity production are estimated to decrease in all scenarios, due to a combination of using more natural gas power plants, renewables, emissions regulations, and retiring old inefficient coal power plants. However, reductions are larger in fall, winter, and spring than in summer, when ozone pollution is of greatest concern. Emissions from oil and gas production are estimated to either increase or decrease depending on the location, scenario, and the number of sources affected by regulations. The net change in emissions thus depends on pollutant, location, and time of year.


2014 ◽  
Vol 36 (4) ◽  
pp. 389 ◽  
Author(s):  
Jeremy Dore ◽  
Christine Michael ◽  
Jeremy Russell-Smith ◽  
Maureen Tehan ◽  
Lisa Caripis

Land activities contribute ~18% of total greenhouse gas emissions produced in Australia. To help reduce these emissions, the Carbon Farming Initiative (CFI) was implemented in 2011 to encourage land projects, which reduce the production of greenhouse gases and/or sequester carbon in the land. Prospective projects include savanna fire management and rangelands management, which have high relevance in northern Australia where Indigenous landholding is strong. This paper explores the land-tenure requirements necessary for these kinds of carbon projects to be approved by the Clean Energy Regulator. It provides an introduction to the CFI before discussing the land tenure requirements in the states of Queensland, the Northern Territory and Western Australia with respect to both emissions reduction and carbon sequestration projects. Potential issues with the current framework are highlighted, especially in relation to native title.


2015 ◽  
Vol 10 (2) ◽  
pp. 414-421
Author(s):  
Bahareh Hashemlou ◽  
Hossein Sadeghi ◽  
Arashk Masaeli ◽  
Mohammadhadi Hajian ◽  
Shima Javaheri

Organizations, institutions, and different sectors of manufacturing, services and agriculture are constantly making decisions. Each of the aforementioned sectors, have strategies, tactics, and various functions that play a basic role in reaching the objectives. On the other hand, energy demand in developing countries is increasing day by day. The exact calculation of the cost per unit of electricity generated by power plants is not easy. Therefore, this study according to four sources of natural gas, nuclear energy, renewable energy and other fossil fuels other than natural gas that are used in a variety of electricity production plants is trying to clarify the ranking of generation electricity approach using "fuzzy preference relations" analysis. Accordingly, three models were used and the results showed that natural gas, with regard to the four criteria of low investment cost, low power, lack of pollution and the safety and reliability of electrical energy has priority over other alternatives. Full preferred model results also suggested that the energy of natural gas, renewable energies, nuclear and other fossil fuels should be considered in a priority for power generation. Sensitivity analysis results moreover demonstrated that the above models are not affected by the threshold values ​​and the full stability of the models is observed.


Author(s):  
Günnur Şen ◽  
Mustafa Nil ◽  
Hayati Mamur ◽  
Halit Doğan ◽  
Mustafa Karamolla ◽  
...  

Natural gas combined cycle power plants (CCPPs) are widely used to meet peak loads in electric energy production. Continuous monitoring of the output electrical power of CCPPs is a requirement for power performance. In this study, the role of ambient temperature change having the greatest effect on electric production is investigated for a natural gas CCPP. The plant has generated electricity for fourteen years and setup at 240 MW in Aliağa, İzmir, Turkey. Depending on the seasonal temperature changes, the study data were obtained from each gas turbine (GT), steam turbine (ST) and combined cycle blocks (CCBs) in the ambient temperature range of 8-23°C. It has been found that decreases of the electric energy in the GTs because of the temperature increase and indirectly diminishes of the electricity production in the STs. As a result, the efficiency of each GT, ST and CCB reduced, although the quantity of fuel consumed by the controllers in the plant was decreased. As a result of this data, it has been recommended and applied that additional precautions have been taken for the power plant to bring the air entering the combustion chamber to ideal conditions and necessary air cooling systems have been installed.


Author(s):  
Marco Gambini ◽  
Michela Vellini

In this paper two options for H2 production, by means of fossil fuels, are presented and their performances are evaluated when they are integrated with advanced H2/air cycles. In this investigation two different schemes have been analyzed: an advanced combined cycle power plant (CC) and a new advanced mixed cycle power plant (AMC). The two methods for producing H2 are as follows: • partial oxidation of methane; • gasification of coal. These hydrogen production plants require material and energetic integrations with the power section and the best interconnections must be investigated in order to obtain good overall performance. With reference to thermodynamic and economic performance, significant comparisons have been made between the above mentioned reference plants. An efficiency decrease and an increase in the cost of electricity have been obtained when power plants are equipped with a fossil fuel decarbonization section. The main results of the performed investigation are quite variable among the different H2 production technologies here considered: the efficiency decreases in a range of 5.5 percentage points to nearly 10 for the partial oxidation of the natural gas and in a range of 6.2–6.4 percentage points for the coal gasification. The electricity production cost increases in a range of about 33–37% for the first option and in a range of about 24–32% for the second one. The clean use of coal seems to have very good potentiality because, in comparison with natural gas decarbonisation, it allows lower energy penalizations (about 6 percentage points) and lower economic increases (about 24% for the CC).


Author(s):  
Gurbakhash Bhander ◽  
Chun Wai Lee ◽  
Matthew Hakos

Abstract The growing worldwide interest in low carbon electric generation technologies has renewed interest in natural gas because it is considered a cleaner burning and more flexible alternative to other fossil fuels. Recent shale gas developments have increased natural gas production and availability while lowering cost, allowing a shift to natural gas for electricity production to be a cost-effective option. Natural gas generation in the U.S. electricity sector has grown substantially in recent years (over 31 percent in 2012, up from 17 percent in 1990), while carbon dioxide (CO2) emissions of the sector have generally declined. Natural gas-fired electrical generation offers several advantages over other fossil (e. g. coal, oil) fuel-fired generation. The combination of the lower carbon-to-hydrogen ratio in natural gas (compared to other fossil fuels) and the higher efficiency of natural gas combined cycle (NGCC) power plants (using two thermodynamic cycles) than traditional fossil-fueled electric power generation (using a single cycle) results in less CO2 emissions per unit of electricity produced. Furthermore, natural gas combustion results in considerably fewer emissions of air pollutants such as nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter (PM). Natural gas is not the main option for deep de-carbonization. If deep reduction is prioritized, whether of the electricity sector or of the entire economy, there are four primary technologies that would be assumed to play a prominent role: energy efficiency equipment, nuclear power, renewable energy, and carbon capture and storage (CCS). However, natural gas with low carbon generation technologies can be considered a “bridge” to transition to these deep decarbonization options. This paper discusses the economics and environmental impacts, focusing on greenhouse gas (GHG) emissions, associated with alternative electricity production options using natural gas as the fuel source. We also explore pairing NGCC with carbon capture, explicitly examining the costs and emissions of amine absorption, cryogenic carbon capture, carbonate fuel cells, and oxy-combustion.


2012 ◽  
Vol 52 (1) ◽  
pp. 195
Author(s):  
Doug Young

The Clean Energy Act (CEA) and its related legislation received royal assent on 18 November 2011, ushering in a new era for the Australian industry, and for those who deal with it. Building on the 2007 National Greenhouse and Energy Reporting Scheme (NGERS), which mandates the measurement and reporting of greenhouse gas emissions and electricity production and consumption, the CEA imposes direct obligations on: individual industrial operations (facilities) that emit more than 25,000 tonnes of carbon dioxide, or its other equivalent greenhouse gases, from particular sources, in a year; suppliers of natural gas (at the point of last supply before the gas is burnt or otherwise used), for the emissions that will be generated when the gas is burnt; and, operators of land-fill facilities, such as local councils. While the primary emissions targeted by the scheme are produced by burning fossil fuels, they also include emissions such as the methane released when coal is mined. The obligations include the option of surrendering carbon units for each tonne of emissions, however, if this optional step is not performed, the mandatory payment of a tax, which far exceeds the cost of a unit, is enforced. The Australian Government will sell carbon units at a fixed price for the first three years, starting at $23, after which units will be auctioned for between $15 and the expected international unit price, plus $20. The supply of domestic units will be unlimited for the three fixed price years, but will be subject to a reducing cap in following years, consistent with the Government policy of reducing Australia’s emissions. The Government has created a monopoly for the supply of units for the first three years by prohibiting the use of overseas-sourced carbon units, and by only allowing 5% of the unit surrender requirements to be comprised of Australian generated carbon credits. Thereafter, for the first five of the flexible-charge years, only half the units can be sourced from overseas, with any apparent saving likely to be offset by the various taxes and charges applicable to the use of those units. Certain fuels will also be separately taxed. Entities, however, which acquire, manufacture or import fuels and would otherwise be entitled to a fuel tax credit, may be able to assume direct liability thus enabling them to acquire or manufacture fuel, free of the carbon tax component. Where the imposts will cause competitive disadvantage to industries that compete with entities from other countries that do not have similar imposts, some assistance is provided in the form of allocated units provided at no charge. Assistance is also available to coal-fired electricity generators, producers of liquefied natural gas, operators of gassy coal mines, and the steel industry (not discussed in this paper). This paper also explains, in detail, how liability is created, how to determine which entities are liable, the means of assigning liability to other entities, and the assistance available to various industries to help deal with the financial impact of the scheme on their operations. It also outlines the key concepts that underpin the scheme.


2013 ◽  
Vol 12 (1) ◽  
pp. 03
Author(s):  
R. E. Silva ◽  
P. Magalhães Sobrinho

This paper presents a case study on the impact of the use of natural gas cogeneration plants in industrial facilities from food companies established in the State of São Paulo, aiming at the financial and greenhouse gases emissions (GHG) analysis. It is proposed a comparison between two different energy supply models for two manufacturing plants, the first one based on electricity supply from local grid and steam from natural gas fired steam generators, and a second model that considers the industries energy needs being partially supplied through natural gas cogeneration plants which are installed in each one of the companies. This study indicates the differences of the financial results for supplying electricity and steam in both models proposed, describing the main variations and the reasons for those, besides identifying the main current tariff benefits in the legislation for the different classes of power plants and Energy Market. The summarized greenhouse gases inventory is presented for both industries as well, and a later assessment of environmental impact from the studied cogeneration plants in the overall GHG emissions in the two proposed scenarios is done. Finally, it is presented the relation analysis between electricity and steam supplying costs if compared with the greenhouse gases emissions levels for both proposed scenarios, and how public policies can act in order to guide emissions decreasing, since São Paulo State has promulgated a law in which establishes a major GHG emissions reduction to 2020.


2020 ◽  
Vol 12 (7) ◽  
pp. 1093
Author(s):  
Ignacio Martín Nieto ◽  
David Borge-Diez ◽  
Cristina Sáez Blázquez ◽  
Arturo Farfán Martín ◽  
Diego González-Aguilera

This research work aims at a multinational study in Europe of the emissions and energy costs generated by the operation of low enthalpy geothermal systems, with heat pumps fed by different energy sources. From an economic point of view, natural gas and biogas prices are, usually, lower than electricity ones. So it may be advantageous to use these energy sources to feed the heat pumps instead of electricity. From the environmental point of view, it is intended to highlight the fact that under certain conditions of electricity production (electricity mix), more CO2 emissions are produced by electricity consumption than using other a priori less “clean” energy sources such as natural gas. To establish the countries where each of the different heat pumps may be more cost-efficient and environmentally friendly, data from multi-source geospatial databases have been collected and analyzed. The results show that in the majority of cases, the electric heat pump is the most recommendable solution. However, there are some geographic locations (such as Poland and Estonia), where the gas engine heat pump may be a better alternative.


1991 ◽  
Vol 113 (3) ◽  
pp. 440-447 ◽  
Author(s):  
K. J. Springer

Global what? is a frequent response by those who first hear of the potential for global warming, global climate change, and global catastrophe, potentially brought on by excessive greenhouse gases in the upper atmosphere. The principal greenhouse gas, CO2, is joined by methane, N2O, and other trace gases in absorbing infrared radiation, which would otherwise escape into space, a process thought to be responsible for gradual increase in temperature that will melt ice caps and raise ocean levels. This paper discusses control possibilities that could be considered once there is agreement that CO2 must be controlled. Many of the responses to the energy crisis of 1974 are applicable for CO2 control. A variety of technologies, energy sources, and ideas are offered that, in combination, could be the basis for a global energy policy. Conversion and replacement of coal, oil, and eventually natural gas fired electric power plants with other energy sources such as nuclear, solar, wind, tidal, and geothermal, could significantly reduce CO2 emissions. There are, however, no good alternatives to fossil fuels used in transportation that significantly reduce CO2 emissions. Of all the fossil fuels, natural gas has the least CO2 production. Electric vehicles and hydrogen-fueled engines are future possibilities, but the electricity for the electric cars and for making hydrogen must be from nonfossil fuel driven generators. Conservation, efficiency, and tax incentives are other parts of a control strategy, once the amount of control considered necessary is established. Renewed interest in nonfossil fuel energy sources and their research and development is obviously needed.


Sign in / Sign up

Export Citation Format

Share Document