scholarly journals Feasibility study of renewable energy resources and optimization of electrical hybrid energy systems: Case study for Islamic Azad University, South Tehran Branch, Iran

2017 ◽  
Vol 21 (1 Part A) ◽  
pp. 335-351 ◽  
Author(s):  
Farivar Fazelpour ◽  
Nima Soltani

Renewable energies are increasingly seen as the best solution to a growing global population demanding affordable access to electricity while reducing the need for fossil fuels. Country of Iran has vast untapped solar, wind, geothermal and hydroelectric sources that hold the potential to meet domestic needs. Renewable energy is also essential to Iran as it will curb massive air pollution. In this paper economical and feasibility study of various hybrid systems are performed by using HOMER software model for supplying electricity to the Engineering Department of Islamic Azad University. For this study, annual electricity demand of the university is 1,174,935 kWh with a peak demand of about 331 kW, average wind speeds, based on hourly data during the period of eleven years (2000-2010), are between 3 to 5 m/s in all months of the year. For solar radiation, six models are evaluated to select the best model for estimation of the daily global solar radiation (GSR) on a horizontal surface in the study location. Among these six models, H/HO=a+b (S/S0)+ c(S/S0)2 is chosen as the most optimum model for estimating solar irradiation. The results indicate that among the three hybrid systems for fulfilling electrical energy needs, the Wind/Diesel/Battery hybrid system with 9 wind turbines (20 kW), one diesel generator (300 kW), 50 batteries, and 50 kW power converters with net present cost of $4,281,800 and cost of energy of 0.285 $/kWh is the most economically efficient hybrid system. (based on 2015 US dollar).

Author(s):  
Temitope Adefarati ◽  
G.D. Obikoya

The rapid growth of the global economy has led to a high demand of electric energy and utilization of fossil fuels to meet the power demand. This has motivated the utilities or independent power providers to incorporate renewable energy resources (RERs) into their power systems. Moreover, with the increasing concerns of environmental protection and fossil fuel depletion, RERS are universally accepted as the potential alternative to fossil fuels. Consequently, this work aims at exploring the application of the photovoltaic (PV), electric storage system (ESS) and wind turbine generator (WTG) in a microgrid (MG) system to reduce the total annual cost (TAC) and environmental impact reduction index (EIR) while maintaining the power system constraints and load requirements. The problem is formulated by using the fmincon optimization solver in the MATLAB environment to assess the environmental and economic effects of utilizing RERs in a MG system. The values of TAC and EIR obtained in the study are compared with the base case study where a reciprocating engine is only utilized to meet the same power demand without using RERs and ESS. The results obtained from the study indicate that a WTG/PV/ ESS/ diesel generator MG system has achieved good results. The outcomes of the study demonstrate that utilization of green technologies is suitable for achieving global sustainable energy development.


2021 ◽  
Vol 3 (4) ◽  
pp. 804-820
Author(s):  
Quynh T. Tran ◽  
Kevin Davies ◽  
Saeed Sepasi

In remote areas, extending a power line to the primary electricity grid can be very expensive and power losses are high, making connections to the grid almost impossible. A well-designed microgrid that integrates renewable energy resources can help remote areas reduce investment costs and power losses while providing a reliable power source. Therefore, investigating the design of an independent and economically practical microgrid system for these areas is necessary and plays an important role. This paper introduces a design procedure to design an isolated microgrid using HOMER software for remote areas. In Vietnam, due to the obstruction of the mountainous terrain or the isolated island location, many remote areas or islands need electrification. A simple case study of a hybrid system with a 60 kW peak load demand on Con Dao island in Vietnam is used to illustrate the proposed design method. Specifically, a hybrid system that includes a PV system, batteries, and a diesel generator is designed. To provide the full information of the designed hybrid system designed, each solution is analyzed and evaluated in detail according to the sensitivity parameters.


Author(s):  
Da’Janel Roberts-Smith ◽  
Landon Onyebueke

Renewable energy is the only known source that can suffice the global demand in a sustainable way while preserving human and environmental health. Fossil fuels offer an unparalleled ability to robustly transform simple ideas into lucrative businesses and operations despite its inherent devastation imposed to the ecosystem and energy security. Together, fossil fuels, renewable energy and battery storage technology, offer great promise for an improved quality of life inclusive of global access to environmentally pristine, uninterrupted energy. Hybrid systems can be designed to deliver clean, portable energy cost-effectively, efficiently and reliably while minimizing present-day economic and environmental impact. An improvement in battery storage technology is of paramount importance to design an optimal hybrid system necessary to meet peak demands and compensate for intermittency within renewable energy resources. Various battery types have been developed as the technology of choice for renewable energy applications but compatibility issues of different battery systems to renewable energy sources remain. This study provides a comparative analysis of battery storage systems and introduces a mathematical model for a photovoltaic-wind-diesel hybrid system integrating optimization and performance techniques along with an economic analysis that will be used for further study and future simulation.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6453
Author(s):  
Saeed Esfandi ◽  
Simin Baloochzadeh ◽  
Mohammad Asayesh ◽  
Mehdi Ali Ehyaei ◽  
Abolfazl Ahmadi ◽  
...  

Efficient solar and wind energy to electricity conversion technologies are the best alternatives to reduce the use of fossil fuels and to evolve towards a green and decarbonized world. As the conventional photovoltaic systems use only the 600–1100 nm wavelength range of the solar radiation spectrum for electricity production, hybrid systems taking advantage of the overall solar radiation spectrum are gaining increasing interest. Moreover, such hybrid systems can produce, in an integrated and combined way, electricity, heating, cooling, and syngas through thermochemical processes. They have thus the huge potential for use in residential applications. The present work proposes a novel combined and integrated system for residential applications including wind turbines and a solar dish collector for renewables energy harvesting, an organic Rankine cycle for power production, an absorption chiller for cold production, and a methanation plant for CH4 production from captured CO2. This study deals with the energy, exergy, economic, and exergoenvironmental analyses of the proposed hybrid combined system, to assess its performance, viability, and environmental impact when operating in Tehran. Additionally, it gives a clear picture of how the production pattern of each useful product depends on the patterns of the collection of available renewable energies. Results show that the rate of methane production of this hybrid system changes from 42 up to 140 Nm3/month, due to CO2 consumption from 44 to 144 Nm3/month during a year. Moreover, the energy and exergy efficiencies of this hybrid system vary from 24.7% and 23% to 9.1% and 8%, respectively. The simple payback period of this hybrid system is 15.6 and the payback period of the system is 21.4 years.


2013 ◽  
Vol 2 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Anita Gudelj ◽  
Maja Krčum

In this paper the majority of research refers to the optimal configuration of hybrid system that uses renewable energy and wind energy and solar radiation in association with diesel aggregate and batteries. These independent energy systems (hybrid systems) are becoming popular due to increasing energy costs and decreasing prices of turbines and Photo-Voltaic (PV) panels. But the only drawback is that their outputs depend upon the climatic conditions. The main goal to optimization a hybrid system is necessary to obtain the configuration of the system as well as the control strategy that minimizes the total cost through the useful life of the installation to meet the desired consumption and/or the pollutant emissions. The HOGA (Hybrid Optimizations by Genetic Algorithms) program was used to simulate the system operation and calculate technical economic parameters for each configuration. The system configuration of the hybrid is derived based on the data of wind and solar radiation which are related to the southern Croatian coast, as on a theoretical annual load at an observed location. Also, technical data for components are taken from the manufacturer’s specifications (datasheet). In this paper the advantages and disadvantages of commonly used types of generators (synchronous and asynchronous generators) are presented. Results show that the hybrid systems have considerable reductions in carbon emission and cost of the system.


2016 ◽  
Vol 818 ◽  
pp. 151-155
Author(s):  
Amir Hesam Khavari ◽  
Zulkurnain Abdul-Malek ◽  
Mehdi Moradi ◽  
Jalal Tavalaei ◽  
Sajjad Abdolahzadeh Anbaran ◽  
...  

The utilization of renewable resources is growing, in part due to the environmental impacts caused by fossil fuels. The largest sources of renewable energy are wind and solar and many predict that these energy sources will be increasingly used for distributed generation. In this paper, the feasibility is examined of a grid-independent system applied for a remote area electrification in Binalood, Iran. Traditional power systems for remote or rural areas are based on fossil fuels. After addition of renewable energy resources, solar energy applications have become popular in remote energy systems. The recent study and research works show that adding other possible renewable energy resources such as wind, hydro and biomass could make a hybrid system more cost-effective and environmentally friendly. Hence, in the present study, an overview of applied hybrid renewable energy system (HRES) for worldwide villages with special attention on Iran has been proposed to help present and future works for better achievement in this field. Furthermore sensitivity analyses are performed to determine the impact on performance of several key parameters: wind speed and fuel costs. HOMER was used to evaluate the feasibility of various hybrid systems. The results of a comprehensive feasibility data analysis along with its economic evaluation indicate that the wind-diesel hybrid system with battery storage is most efficient energy system for supplying this remote area's electrical energy demands.


Author(s):  
Abdellah Benallal ◽  
◽  
Nawel Cheggaga ◽  

Renewable energy hybrid systems give a good solution in isolated sites, in the Algerian desert; wind and solar potentials are considerably perfect for a combination in a renewable energy hybrid system to satisfy local village electrical load and minimize the storage requirements, which leads to reduce the cost of the installation. For a good sizing, it is essential to know accurately the solar potential of the installation area also wind potential at the same height where wind electric generators will be placed. In this work, we optimize a completely autonomous PV-wind hybrid system and show the techno-economical effects of the height of the wind turbine on the sizing of the hybrid system. We also compare the simulation results obtained from using wind speed measured data at 10 meters and 40 meters of height with the ones obtained from using wind speed extrapolation on HOMER software.


2017 ◽  
Vol 6 (3) ◽  
pp. 50-65
Author(s):  
Dilek Temiz Dinç ◽  
Aytaç Gökmen ◽  
Zehra Burçin Kanık

Energy is the source of development of the mankind and an indispensable input for economic growth. Currently, most of the energy consumed in the world is composed of fossil fuels which are not environmentally friendly and reliable since their prices are volatile and their supply compels importing countries dependent on energy exporting countries. Thus, a good remedy to reduce fossil fuel dependency is to utilize more renewable energy resources. Renewable resources can be replenished quickly, are almost infinite and would lead a country to sustainable development. The Republic of Turkey is a net importer of energy. The diversification of energy sources and supply security is of great importance for it. Thus, the objective of this study is to analyze the relationship between renewable energy production and economic growth in Turkey by using Johansen Cointegration Test, Vector Error Correction Model (VECM), Granger Causality Test and the Augmented Dickey-Fuller Test (ADF). Consequently, both long run and short run a casualty running from GDP growth to renewable energy production is determined in the study.


2020 ◽  
Vol 10 (9) ◽  
pp. 3332
Author(s):  
Mohammad Al-Addous ◽  
Sahil Al Hmidan ◽  
Mustafa Jaradat ◽  
Emil Alasis ◽  
Nesrine Barbana

Periodic daily fluctuating demand for energy and power is a perceptible phenomenon, resulting in some moments of low demand for power and energy related to the huge energy comes from renewable energy systems, and some moments of peak load demand. This phenomenon, when combined with the non-stationary operation of huge capacity of renewable energy systems, results in no stability of voltage and frequency. To assure continuous network stability and to avoid energy losses from renewable energy systems that are subject to such control system, a hybrid system with energy–power storage in the form of pumped-hydro storage is considered the most suitable technically. This paper presents the design, modeling, analysis, and feasibility study of a hybrid wind and water-pumping storage system. The system was designed and analyzed for King Talal Dam (KTD), which is in Northern Jordan. The importance of this study is that it is directed mainly to Jordan and the Middle East and North Africa (MENA) region in general. The Jordanian renewable energy market is a promising arena that encourages developers, investors, engineers, and companies to develop and install pure renewable energy systems and renewable energy hybrid projects for the generation of electricity. The analysis of wind data is carried out using the “windfarm” software with 5.16 m/s as average wind speed. It is followed by the design of the hybrid system, which is simulated for a daily operation of 2–3 h as peak load hours. Based on the technical outcomes, cost study and feasibility analyses are carried out with Jordanian market prices. The total estimated annual energy production is 26,663,933 kWh from 10 MW wind farm and 5.2 MW pumping storage system. The aforementioned studies showed that a similar hybrid system is not always fully commercially feasible. However, a pure pumped-storage system proved to be technically feasible and assisting the grid. The whole project analysis determines that such a system boosts the operational stability of the grid, increases the penetration of renewable energy systems and reduces the energy import. In addition, 15,100,000 tons of CO2-equivalent is estimated as annual emissions reduction in this study.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1455 ◽  
Author(s):  
David Katz ◽  
Arkadiy Shafran

The Levant area of the Middle East suffers from both chronic water scarcity and high population growth. It is also a region highly dependent of fossil fuels. In order to address current and expected water demands, several countries in the region, including Israel, Jordan and the Palestinian Authority (PA), are depending increasingly on desalination, which is expected to intensify energy consumption and energy related emissions. Given that the region also benefits from high levels of solar irradiation nearly year-round, much attention has been given to the possibility of developing renewable energy in general and for desalination specifically. This paper presents partial results of a pre-feasibility study assessing the prospects of transfers of desalinated water from Israel and/or the PA, which have access to the Mediterranean Sea, to Jordan, in exchange for renewable solar-produced electricity from Jordan, which, unlike its neighbors, has an abundance of available open space suitable for solar production. The analysis shows that single-axis tracking photovoltaic (PV) systems appear to be the most economically feasible option. Moreover, the study shows that the proposed idea of international cooperation and water-energy exchanges, while facing political obstacles, could provide numerous economic, environmental and geopolitical benefits to all parties involved. As such, an arrangement such as that examined may be a more promising means of promoting both desalination and renewable energy than if each country unilaterally develops desalination and renewable energy in isolation from one another.


Sign in / Sign up

Export Citation Format

Share Document