scholarly journals Hydromagnetic Falkner-Skan fluid rheology with heat transfer properties

2020 ◽  
Vol 24 (1 Part A) ◽  
pp. 339-346 ◽  
Author(s):  
Muhammad Awais ◽  
A Aqsa ◽  
Saeed Awan ◽  
Saeed Rehman ◽  
Muhammad Raja

This article addresses the effects of heat transfer on magnetohydrodynamic Falkner-Skan wedge flow of a Jeffery fluid. The continuity, momentum and energy balance equations yield the relevant PDE which are transforms to ODE by exploitation of similarity variables. Strength of optimal homotopy series solutions is practiced to solved analytically the transformed ODE model of hydromagnetic Falkner-Skan fluid rheology with heat transfer scenarios. The graphical and numerical illustrations of the result are presented for different interesting flow parameters. Numerical values of Nusselt number are tabulated. It is observed that for the Falkner-Skan rheology, the applied magnetic field acts as a controlling agnet which controls the fluids velocity up to the desired value whereas Debrorah number enhances the fluid velocity.

2020 ◽  
Vol 9 (3) ◽  
pp. 143-151
Author(s):  
S. Jena ◽  
S. R. Mishra ◽  
P. K. Pattnaik

In the current scenario a new mathematical model is designed and examined for the unsteady course of nanofluid through permeable vertical surface due to the interaction of inclined magnetic field. Radiative heat transfer properties is included assuming the Cogley radiation, dissipative heat energy due to the conjunction o magnetic field i.e., Joule dissipation and the space and time-dependent heat source/sink amplifies the study as well. Depending upon todays need in various industries the implementation of nanofluid is vital. Therefore, present study involves the behavior of both metal and oxide nanoparticles in the base fluid kerosene. Involvement of transformation rules the problem is converted into nonlinear set of ODEs and further these are solved employing approximate analytical technique such as Variational Iteration Method (VIM). The characteristics of various flow parameters are analyzed via graphs and the numerical simulation along with the validation of the result is obtained through tables. The comparative study brings out the convergence criterion of the methodology adopted herein. However, the favorable results are; the fluid temperature augments with increasing nanoparticle volume fraction and suction enriches both the fluid velocity and temperature whereas injection retards it significantly.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Rita Choudhury ◽  
Utpal Jyoti Das

The combined effect of a transverse magnetic field and radiative heat transfer on unsteady flow of a conducting optically thin viscoelastic fluid through a channel filled with saturated porous medium and nonuniform walls temperature has been discussed. It is assumed that the fluid has small electrical conductivity and the electromagnetic force produced is very small. Closed-form analytical solutions are constructed for the problem. The effects of the radiation and the magnetic field parameters on velocity profile and shear stress for different values of the viscoelastic parameter with the combination of the other flow parameters are illustrated graphically, and physical aspects of the problem are discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Abdelhalim Ebaid ◽  
Fahd Al Mutairi ◽  
S. M. Khaled

In nanofluid mechanics, it has been proven recently that the no slip condition at the boundary is no longer valid which is the reason that we consider the effect of such slip condition on the flow and heat transfer of two types of nanofluids. The present paper considers the effect of the velocity slip condition on the flow and heat transfer of the Cu-water and the TiO2-water nanofluids over stretching/shrinking sheets in the presence of a magnetic field. The exact expression for the fluid velocity is obtained in terms of the exponential function, while an effective analytical procedure is suggested and successfully applied to obtain the exact temperature in terms of the generalized incomplete gamma function. It is found in this paper that the Cu-water nanofluid is slower than the TiO2-water nanofluid for both cases of the stretching/shrinking sheets. However, the temperature of the Cu-water nanofluid is always higher than the temperature of the TiO2-water nanofluid. In the case of shrinking sheet the dual solutions have been obtained at particular values of the physical parameters. In addition, the effect of various physical parameters on such dual solutions is discussed through the graphs.


2017 ◽  
Vol 14 (3) ◽  
pp. 193-199 ◽  
Author(s):  
Meysam Amini ◽  
Esmaeil GhasemiKafrudi ◽  
Mohammad Reza Habibi ◽  
Azin Ahmadi ◽  
Akram HosseinNia

Purpose Due to the extensive industrial applications of stagnation flow problems, the present work aims to investigate the magnetohydrodynamics (MHD) flow and heat transfer of a magnetite nanofluid (here Fe3O4–water nanofluid) impinging a flat porous plate under the effects of a non-uniform magnetic field and chemical reaction with variable reaction rate. Design/methodology/approach Similarity transformations are applied to reduce the governing partial differential equations with boundary conditions into a system of ordinary differential equations over a semi-infinite domain. The modified fourth-order Runge–Kutta method with the shooting technique which is developed for unbounded domains is conducted to give approximate solutions of the problem, which are then verified by results of other researchers, showing very good agreements. Findings The effects of the volume fraction of nanoparticles, permeability, magnetic field, chemical reaction and Schmidt number on velocity, temperature and concentration fields are examined and graphically illustrated. It was found that fluid velocity and temperature fields are affected strongly by the types of nanoparticles. Moreover, magnetic field and radiation have strong effects on velocity and temperature fields, fluid velocity increases and thickness of the velocity boundary layer decreases as magnetic parameter M increases. The results also showed that the thickness of the concentration boundary layer decreases with an increase in the Schmidt number, as well as an increase in the chemical reaction coefficient. Research limitations/implications The thermophysical properties of the magnetite nanofluid (Fe3O4–water nanofluid) in different conditions should be checked. Practical implications Stagnation flow of viscous fluid is important due to its vast industrial applications, such as the flows over the tips of rockets, aircrafts, submarines and oil ships. Moreover, nanofluid, a liquid containing a dispersion of sub-micronic solid particles (nanoparticles) with typical length of the order of 1-50 nm, showed abnormal convective heat transfer enhancement, which is remarkable. Originality/value The major novelty of the present work corresponds to utilization of a magnetite nanofluid (Fe3O4–water nanofluid) in a stagnation flow influenced by chemical reaction and magnetic field. It should be noted that in addition to a variable chemical reaction, the permeability is non-uniform, while the imposed magnetic field also varies along the sheet. These, all, make the present work rather original.


Author(s):  
Wekesa Waswa Simon ◽  
Winifred Nduku Mutuku

Heat transfer fluids play a vital role in many engineering and industrial sectors such as power generation, chemical production, air-conditioning, transportation and microelectronics. Aim: To numerically investigate the effect of double stratification on magneto-hydrodynamic boundary layer flow and heat transfer of an Eyring-Powell fluid. Study Design: Eyring-Powell fluid is one of the non-Newtonian fluid that possess different characteristics thus different mathematical models have been formulated to describe such fluids by appropriate substitution into Navier-Stoke’s equations. The challenging complexity and the nature of the resultant equations are of great interest hence attract many investigations. Place and Duration of Study: Department of Mathematics and Actuarial Science, Kenyatta University, Nairobi, Kenya between December 2019 and October 2020. Methodology: The resultant nonlinear equations are transformed to linear differential equations by introducing appropriate similarity transformations. The resulting equations are solved numerically by simulating the predictor-corrector (P-C) method in matlab ode113. The results are graphically depicted and analysed to illustrate the effects of magnetic field, thermophoresis, thermal stratification, solutal stratification, material fluid parameters and Grashoff number on the fluid velocity, temperature, concentration, local Sherwood number and local Nusselt number. Results: The results show that increasing the magnetic field strength, thermophoresis, thermal stratification and solutal stratification lead to a decrease in the fluid velocity, temperature, Sherwood number, Nusselt number and skin friction while an increase in the magnetic field strength, thermal stratification, solutal stratification, and thermophoresis increases the fluid concentration. Conclusion: The parameters in this study can be varied to enhance heat ejection of Eyring-Powell fluid and applied in industries as a coolant or heat transfer fluid.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Qingkai Zhao ◽  
Hang Xu ◽  
Longbin Tao

Purpose The purpose of this paper is to investigate the immiscible two-layer heat fluid flows in the presence of the electric double layer (EDL) and magnetic field. The effects of EDL, magnetic field and the viscous dissipative term on fluid velocity and temperature, as well as the important physical quantities, are examined and discussed. Design/methodology/approach The upper and lower regions in a horizontal microchannel with one layer being filled with a nanofluid and the other with a viscous Newtonian fluid. The nanofluid flow in the lower layer is described by the Buongiorno’s nanofluid model with passively controlled model at the boundaries. An appropriate set of non-dimensional quantities are used to simplify the nonlinear systems. The resulting coupled nonlinear equations are solved by using homotopy analysis method. Findings The present work demonstrates that increasing the EDL thickness and Hartmann number can restrain the fluid flow. The Brinkmann number has a significant role in the enhancement of heat transfer. It is also identified that the influence of EDL effects on microflow cannot be ignored. Originality/value The effects of viscous dissipation involved in the heat transfer process and the body force because of the EDL and the magnetic field are considered in the thermal energy and momentum equations for both regions. The detailed derivation procedure of the analytical solution for electrostatic potential is provided. The analytical solutions can lead to improved understanding of the complex microfluidic systems.


Author(s):  
M M Heyhat ◽  
N Khabazi

In this article, the magnetohydrodynamic flow and heat transfer of an upper-convected Maxwell fluid is studied theoretically above a flat rigid surface with constant temperature. It is assumed that the Reynolds number of the flow is high enough for boundary layer approximation to be valid. Assuming a laminar, two-dimensional flow above the plate, the concept of stream function coupled with the concept of similarity solution is utilized to reduce the governing equations, which are continuity, momentum, and energy equations, into two ordinary differential equations. The spectral method is used for solving the equations numerically. The effects of magnetic field, and Deborah, Prandtl, and Eckert numbers on the fluid velocity field and heat transfer behaviour are shown in several plots. Obtained results show that fluid velocity can be decreased by increasing the magnetic number while it increases by increasing the Deborah number. Moreover, the thickness of the thermal boundary layer is decreased by increasing the Deborah and Prandtl numbers. It is increased by an increase in the Eckert number.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
K. S. Balamurugan ◽  
N. Udaya Bhaskara Varma ◽  
J. L. Ramaprasad

AbstractThe current investigation is concerned with heat transfer and entropy generation analysis in a horizontal channel brimming with porous medium in the existence of aligned magnetic field, viscous and joules dissipation and temperature gradient heat source. The boundary conditions are treated as constant values for velocity and temperature at lower and upper walls. An explicit solution of governing equations has been attained in closed system. The repercussions of pertinent parameters on the fluid velocity, temperature, entropy generation and Bejan number are conferred and scrutinized through graphs in detail. Additionally the expressions for shear stress and the rate of heat transfer coefficients at the channel walls are derived and results obtained are physically interpreted through tables. From the conquered results, it is addressed that Brinkman number Br enhances boundary layer thickness. Entropy generation increases with intensifying values of $$M$$ M , aligned angle ϕ, temperature gradient heat source parameter Q, characteristic temperature ration $$\omega$$ ω and permeability parameter K. The shear stress is same at both the lower and upper walls.


Author(s):  
Obulesu Mopuri ◽  
Charankumar Ganteda ◽  
Bhagyashree Mahanta ◽  
Giulio Lorenzini

The main aim of this investigation is to study thermo diffusion, heat source/sink, Joule and chemical effects on heat transfer in MHD mixed convection flow and mass transfer past an infinite vertical plate with ohmic heating and viscous dissipation have been studied. We consider the mixed convection flow of an incompressible and electrically conducting viscous fluid such that x* -axis is taken along the plate in upward direction and y* -axis is normal to it. A transverse constant magnetic field is applied i.e., in the direction of y*-axis. Approximate solutions have been derived for velocity, temperature, concentration profiles, skin friction, rate of heat transfer and rate of mass transfer using perturbation technique. The obtained results are discussed with the help of graphs to observe the effect of various parameters like Grashof number (Gr), the modified Grashof number (Gm), magnetic parameter (M), Permeability parameter(K), Prandtl number (Pr), Heat Sink(Q), Radiation Parameter (F), Soret parameter (S0), Eckert number (E),Schmidt number(Sc) and Chemical reaction parameter(K0) taking two cases viz. Fluid velocity, temperature and concentration profiles are comparison with Pr=0.71(Air) and Pr =7 (Water) various parameters in cooled and heated plates. Case I: when Gr > 0 (flow on cooled plate), and Case II: Gr < 0, (flow on heated plate). Both the fluid velocity and concentration rising with the increment values of Soret parameter in the fluids Air and Water and also discussed skin friction, Nusselt number and Sherwood number in the fluid’s mercury, electrolytic solution, air and water. The novelty of this study is the consideration of simultaneous occurrence of radiation, heat absorption as well as thermo- diffusion in the magnetic field. It varies in several aspects such as non-dimensional parameters, analytical solutions, and graphical solutions, the analytic solution using the Perturbation technique, and numerical solution using Matlab software for the profile.


Sign in / Sign up

Export Citation Format

Share Document