scholarly journals Numerical simulation of the flow field structure of liquid nitrogen jet

2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1337-1343
Author(s):  
Chengzheng Cai ◽  
Keda Ren ◽  
Qinghua Li

Liquid nitrogen jet is regarded as an excellent technology for the well drilling and reservoir fracturing. To evaluate the flow field structure of liquid nitrogen jet, a 2-D CFD model is established. The transient velocity and temperature fields of liquid nitrogen jet is simulated. The results show that the liquid nitrogen jet also clearly presented the velocity boundary and potential core region similar to the water jet. Given the temperature difference between the jet and surrounding fluid, the liquid nitrogen jet has an obvious temperature boundary, on which the jet temperature is equal to the initial value. According to the phase of the jet, the flow structure can be divided into the liquid nitrogen jet and non-liquid nitrogen jet regions. The temperature boundary shows a larger width than the velocity boundary for liquid nitrogen jet. Moreover, both width and length of the liquid nitrogen jet region are greater than the potential core region.

2004 ◽  
Vol 20 (2) ◽  
pp. 145-157 ◽  
Author(s):  
Fei-Bin Hsiao ◽  
I-Che Hsu ◽  
Cheng-Chiang Hsu

AbstractThe Instability modal behavior of coherent structures in a jet-small cylinder impinging flow field is extensively studied by hot-wire anemometry measurements. The free jet is employed with a small cylinder of 3 mm in diameter located in the potential core region at the impinging length of L/H = 1.5 for the near field impingement and L/H = 4 for the far field impingement. The jet exit velocity is operated at 10 m/sec with the Reynolds number of 1.03 × 104 based on the nozzle exit width H = 15mm. The impinging jet is locally excited at the nozzle exit with varicose mode (m =0) and sinuous mode (m = 1) disturbances at the fundamental frequency of the natural jet flow. Data indicate that the jet flow is greatly altered and significantly enhanced by strengthening the coherent structures of the flow due to resonance according to the feedback mechanism. Although the original natural jet preferably exhibits the varicose mode, the strong sinuous mode is dominant in the flow field owing to the presence of the small cylinder in the potential core region. In the near field impingement, the wake region behind the cylinder preserves the pure sinuous mode to where the jet vortices merge and then mildly fades out. Whereas in the jet shear layer, the sinuous mode exists in the initial portion and gradually transforms to the varicose mode. In the far field impingement, the alternate mode dominates in each frequency stage in pure impinging case and the modal behavior follows the selected mode with the introducing acoustic waves in the acoustic excitation cases.


1978 ◽  
Vol 40 (3) ◽  
pp. 329-340 ◽  
Author(s):  
W. Berkhahn ◽  
W. Ehrfeld ◽  
G. Krieg

Author(s):  
Yi Han ◽  
Feng Liu ◽  
Xin Ran

In the production process of large-diameter seamless steel pipes, the blank heating quality before roll piercing has an important effect on whether subsequently conforming piping is produced. Obtaining accurate pipe blank heating temperature fields is the basis for establishing and optimizing a seamless pipe heating schedule. In this paper, the thermal process in a regenerative heating furnace was studied using fluent software, and the distribution laws of the flow field in the furnace and of the temperature field around the pipe blanks were obtained and verified experimentally. The heating furnace for pipe blanks was analyzed from multiple perspectives, including overall flow field, flow fields at different cross sections, and overall temperature field. It was found that the changeover process of the regenerative heating furnace caused the temperature in the upper part of the furnace to fluctuate. Under the pipe blanks, the gas flow was relatively thin, and the flow velocity was relatively low, facilitating the formation of a viscous turbulent layer and thereby inhibiting heat exchange around the pipe blanks. The mutual interference between the gas flow from burners and the return gas from the furnace tail flue led to different flow velocity directions at different positions, and such interference was relatively evident in the middle part of the furnace. A temperature “layering” phenomenon occurred between the upper and lower parts of the pipe blanks. The study in this paper has some significant usefulness for in-depth exploration of the characteristics of regenerative heating furnaces for steel pipes.


2011 ◽  
Vol 97-98 ◽  
pp. 698-701
Author(s):  
Ming Lu Zhang ◽  
Yi Ren Yang ◽  
Li Lu ◽  
Chen Guang Fan

Large eddy simulation (LES) was made to solve the flow around two simplified CRH2 high speed trains passing by each other at the same speed base on the finite volume method and dynamic layering mesh method and three dimensional incompressible Navier-Stokes equations. Wind tunnel experimental method of resting train with relative flowing air and dynamic mesh method of moving train were compared. The results of numerical simulation show that the flow field structure around train is completely different between wind tunnel experiment and factual running. Two opposite moving couple of point source and point sink constitute the whole flow field structure during the high speed trains passing by each other. All of streamlines originate from point source (nose) and finish with the closer point sink (tail). The flow field structure around train is similar with different vehicle speed.


2021 ◽  
Vol 215 ◽  
pp. 104681
Author(s):  
Sha Zhong ◽  
Bosen Qian ◽  
Mingzhi Yang ◽  
Fan Wu ◽  
Tiantian Wang ◽  
...  

1988 ◽  
Vol 110 (2) ◽  
pp. 134-139 ◽  
Author(s):  
M. A. Ortega ◽  
J. T. Sielawa

The thermally induced flow field, in a rapidly rotating container consisting of a pair of coaxial cylinders bounded on the top and bottom by horizontal end plates, is considered. The top plate is heated and the bottom plate is cooled, both by small amounts, so that the thermal Rossby number is small, and the cylinders are supposed to be conductive. The induced velocity and temperature fields are determined by subdivision of the flow field; the equation for the central part, the inner core, is solved numerically as well as analytically.


Author(s):  
V. A. Karkoulias ◽  
P. E. Marazioti ◽  
D. P. Georgiou ◽  
E. A. Maraziotis

This paper investigates how the structure of the flow field and the vertical distribution of the pollutant concentration near the wall facades of street canyons are affected by the presence of some elements such as street level galleries. Numerical results are presented for various gallery geometries in combination with facade roughness elements (balconies) for a canyon of an aspect ratio equal to h/w=2.33. The results were obtained by a Computational Fluid Dynamics (CFD) simulation employing the ANSYS-FLUENT suite that incorporated the k-e turbulent (RNG) model. The simulation generated several flow structures inside the canyon (mainly vortices), whose characteristic properties (e.g. number, strength and size) are discussed in terms of the effect of the galleries on the flow field structure and the roughness generated by the building façade balconies. The results indicate a significant influence on both the flow field structure and the mass concentration distribution of the polluting particles.


Sign in / Sign up

Export Citation Format

Share Document