scholarly journals Simulation on cutting forces and cutting temperature in broaching of 300M steel

2019 ◽  
Vol 23 (5 Part A) ◽  
pp. 2585-2594 ◽  
Author(s):  
Changming Zhang ◽  
Anle Mu ◽  
Qi Shen ◽  
Hui Zhang

In this paper, using the method of single factor experiment, set the test parameters of 300M steel through AdvantEdge software broaching process simulation test, simulation results for the finishing, analyzed the influence of broach rake angle and relief angle, tooth lift and cutting speed on cutting force and cutting temperature in the process of broaching, observed the cutting temperature in the broaching process of regional changes, through the analysis, provides theory basis for reasonable design of the broach. The results show that the tooth lift has the greatest influence on the cutting speed, and the tooth lift and cutting speed have the greatest influence on the cutting temperature.

1996 ◽  
Vol 118 (3) ◽  
pp. 419-425 ◽  
Author(s):  
G. Caprino ◽  
L. Nele

The results of orthogonal cutting tests carried out on unidirectional glass fiber reinforced plastic composites, using HSS tools, are presented and discussed. During the tests, performed on a milling machine at very low cutting speed to avoid thermal effects, the cutting speed was held constant and parallel to the fibre direction. Three parameters, namely the tool rake angle α, the tool relief angle γ, and the depth of cut t, were varied. According to the experimental results, the horizontal force per unit width, Fhu, undergoes a dramatic decrease, never verified for metals, with increasing α. Besides, Fhu is only negligibly affected by the relief angle, and linearly increases with t. Similarly to metals, an effect of the depth of cut on the specific energy (size effect) is found also for composites. However, the presented results indicate that the size effect can be analytically modeled in a simple way in the case of composites. The vertical force per unit width, Fvu, exhibits a marked reduction when the relief angle is increased. Fvu, is also very sensitive to the rake angle: the lower α the higher is Fvu. It is shown that this behavior probably reflects a strong influence of the rake angle on the forces developing at the flank. A linear dependence of the vertical force on the depth of cut is also demonstrated. Finally, the experimental data are utilized to obtain empirical formulae, allowing an approximate evaluation of cutting forces.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7876
Author(s):  
Alliche Mohamed-Amine ◽  
Djennane Mohamed ◽  
Djebara Abdelhakim ◽  
Songmene Victor

Factor relationships in a machining system do not work in pairs. Varying the cutting parameters, materials machined, or volumes produced will influence many machining characteristics. For this reason, we are attempting to better understand the effect of the Johnson-Cook (J-C) law of behavior on cutting temperature prediction. Thus, the objective of the present study is to investigate, experimentally and theoretically, the tool/material interactions and their effects on dust emission during orthogonal cutting. The proposed approach is built on three steps. First, we established an experimental design to analyze, experimentally, the cutting conditions effects on the cutting temperature under dry condition. The empirical model which is based on the response surface methodology was used to generate a large amount of data depending on the machining conditions. Through this step, we were able to analyze the sensitivity of the cutting temperature to different cutting parameters. It was found that cutting speed, tool tip radius, rake angle, and the interaction between the cutting speed and the rake angle explain more than 84.66% of the cutting temperature variation. The cutting temperature will be considered as a reference to validate the analytical model. Hence, a temperature prediction model is important as a second step. The modeling of orthogonal machining using the J-C plasticity model showed a good correlation between the predicted cutting temperature and that obtained by the proposed empirical model. The calculated deviations for the different cutting conditions tested are relatively acceptable (with a less than 10% error). Finally, the established analytical model was then applied to the machining processes in order to optimize the cutting parameters and, at the same time, minimize the generated dust. The evaluation of the dust generation revealed that the dust emission is closely related to the variation of the cutting temperature. We also noticed that the dust generation can indicate different phenomena of fine and ultrafine particles generation during the cutting process, related to the heat source or temperature during orthogonal machining. Finally, the effective strategy to limit dust emissions at the source is to avoid the critical temperature zone. For this purpose, the two-sided values can be seen as combinations to limit dust emissions at the source.


2012 ◽  
Vol 472-475 ◽  
pp. 2088-2095 ◽  
Author(s):  
Gan Hua Liu ◽  
Hong Zhi Yan ◽  
Jun Jie Zhang

Tool life and the rationality of cutting parameter setting are evaluated directly by cutting force. In order to predict cutting force, and then to optimize the tooth cutting condition for dry high-speed spiral bevel and hypoid gear cutting, this study has established a 2D cutting FEM simulation platform by using DEFORM-2D based on the 2D orthogonal slot milling experiment. Through the platform, using the method of combining single-factor experiment and multi-factor orthogonal experiment, this study has explored the influence of cutting/tool parameters on cutting force in the dry high-speed cutting process of 20CrMnTi spiral bevel and hypoid gear (face hobbing dry cutting process). The results show that from high degree to low degree, the influence of each parameter on cutting force is as follows: feed > cutting speed > relief angle(P.A.side) >blade rake angle, and the influence of the first three parameters is significant, the influence of blade rake angle is not significant; the optimized condition for dry high-speed spiral bevel and hypoid gear cutting is suggested to be: the cutting speed is 300 m/mim, the feed is 0.06 mm/r, the blade rake angle is 14° and the relief angle(P.A.side) is 10°; the cutting edge can be honed moderately, but the hone radius is not bigger than 0.1 mm.


2013 ◽  
Vol 392 ◽  
pp. 68-72 ◽  
Author(s):  
S. Sulaiman ◽  
A. Roshan ◽  
S. Borazjani

A Finite Element Modeling (FEM) and Simulation was Used to Investigate the Effect of Tool Rake Angle, Cutting Speed and Feed Rate on the Cutting Temperature of Tial6v4 Alloy. the Purpose of this Study was to Find Proper Cutting Parameters for Machining of Titanium Alloy where Cutting Temperature was Lowest. A FEM Based on ABAQUS Software which Involves Jonson-Cook Material Model and Coulomb’s Friction Law was Applied to Simulate an Orthogonal Cutting Process. in this Simulation Work, a Range of Tool Rake Angle from 0° to 10°, a Range of Cutting Speed from 300 m/min to 600 m/min and a Range of Feed Rate between 0.1 Rev/mm and 0.25 Rev/mm were Investigated. the Simulation Results Indicated that Increase in Rake Angle Reduces Cutting Temperature while Increasing Cutting Speed and Feed Rate Increase the Cutting Temperature.


Manufacturing ◽  
2003 ◽  
Author(s):  
Mehdi Che´rif ◽  
Benoiˆt Furet ◽  
Herve´ Thomas ◽  
Jean-Yves Hascoe¨t

CAD/CAM systems require technical data to model the tool and machined workpiece behavior during the cutting process. The large varieties of machining input data prevent exhaustive studies for each machining operation. The purpose of this paper is to analyze the most influent parameters (ie. rake angle, cutting speed and hone radius) on cutting force during the milling process in order to limit experiment testing while providing accurate data for the CAD/CAM requirement. Simulation results based on modified Altan’s approach are compared with experimental measurement for three different materials (AISI P20, AISI H11 and 2024 aeronautic alloy) and varying insert geometries (different rake angles and hone radius) are tested.


Author(s):  
Alper Uysal ◽  
Erhan Altan

In this study, the slip-line field model developed for orthogonal machining with a worn cutting tool was experimentally investigated. Minimum and maximum values of five slip-line angles ( θ1, θ2, δ2, η and ψ) were calculated. The friction forces that were caused by flank wear land, chip up-curl radii and chip thicknesses were calculated by solving the model. It was specified that the friction force increased with increase in flank wear rate and uncut chip thickness and it decreased a little with increase in cutting speed and rake angle. The chip up-curl radius increased with increase in flank wear rate and it decreased with increase in uncut chip thickness. The chip thickness increased with increase in flank wear rate and uncut chip thickness. Besides, the chip thickness increased with increase in rake angle and it decreased with increase in cutting speed.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2014 ◽  
Vol 981 ◽  
pp. 66-69
Author(s):  
Ming Yuan Ren ◽  
En Ming Zhao

This paper presents a design and analysis method of a bandgap reference circuit. The Bandgap design is realized through the 0.18um CMOS process. Simulation results show that the bandgap circuit outputs 1.239V in the typical operation condition. The variance rate of output voltage is 0.016mV/°C? with the operating temperature varying from-60°C? to 160°C?. And it is 3.27mV/V with the power supply changes from 1.8V to 3.3V.


Author(s):  
Yifei Jiang ◽  
Jun Zhang ◽  
Yong He ◽  
Hongguang Liu ◽  
Afaque Rafique Memon ◽  
...  

As cutting tool penetrates into workpiece, stress waves is induced and propagates in the workpiece. This paper aims to propose a two-dimensional discrete element method to analyze the stress waves effects during high speed milling. The dependence of the stress waves propagation characteristics on rake angle and cutting speed was studied. The simulation results show that the energy distribution of stress waves is more concentrated near the tool tip as the rake angle or the cutting speed increases. In addition, the density of initial cracks in the workpiece near the cutting tool increases when the cutting speed is higher. The high speed milling experiments indicate that the chip size decreases as the cutting speed increases, which is just qualitatively consistent with the simulation.


Sign in / Sign up

Export Citation Format

Share Document