scholarly journals Establishment and experimental verification of the hoop tension mechanical model of aluminum alloy tube

2020 ◽  
Vol 24 (3 Part A) ◽  
pp. 1811-1818
Author(s):  
Xiaohua Chen ◽  
Zhanshan Wang ◽  
Yan Yang ◽  
Guangcai Zhang

The ring hoop tension test is an important test method for evaluating the deformation performance of tube. The mechanical model of the hoop tension test is established under the condition that deformation caused by the friction of the die is unequal. The mechanical model is input into the finite element model and compared with the tube uniaxial hoop tensile test. The mechanical model simulation obtained by this method has a better coincidence with the experimental data. Through further analysis of the bulging test of the process, it is proved that the established hoop mechanical model can accurately reflect the plasticity variation characteristics of the tube deformation.

2011 ◽  
Vol 199-200 ◽  
pp. 1273-1280
Author(s):  
Hong Wei Guo ◽  
Rong Qiang Liu ◽  
Zong Quan Deng

The dynamic equivalent continuum model of beamlike space deployable lattice truss which is repetition of the basic truss bay is established based on the energy equivalence. The finite element model of the lattice truss is also developed. Free vibration frequencies and mode shapes are calculated and simulated based on equivalent continuum model and discrete finite element model. The analytical solutions calculated by equivalent continuum model match well with the finite element model simulation results. A prototype of deployable lattice truss consist of 20 truss bays is manufactured. The dynamic response of lattice truss with different truss bays are tested by dynamic vibration experiment, and natural frequencies of lattice truss with different length are obtained from acceleration response curves. The experiment results are compared with simulation results which verifies that the correctness of finite element model, which also validate the effectiveness of equivalent continuum model indirectly.


2012 ◽  
Vol 229-231 ◽  
pp. 321-324
Author(s):  
Hong Tao Yu ◽  
Lei Liu ◽  
Gui Fan Zhao ◽  
Zi Peng Zhang

Frontal rail constructed of composite material was researched, in order to improving vehicle safety performance in frontal crash as well as lightweight of vehicle. Compliance to FMVSS 208, the vehicle frontal crash was simulated using the finite element model of the full vehicle. The occupant head injury was analyzed by sled test using crash pulse. Then, the composite material parameters which have the best function of reducing the occupant head injury value were studied by using orthogonal test method. Using this kind of composite materials, the occupant safety protection was effectively improved and the weight of the frontal rail was greatly reduced.


2013 ◽  
Vol 438-439 ◽  
pp. 583-587
Author(s):  
Kai Yun Yang ◽  
Fei Guo ◽  
Lin Hao Li

For sluice concrete structure is more complex due to constrained by the base effect and upper structures, with the purpose of temperature control, we carry out the simulation analysis of temperature and stress during the construction of pier concrete structure. Taking a sluice project as an example, use the method developed by Thermo finite subspace model simulation procedures, the finite element model of pier structure is built with high precision. The results show that the cracking risk is relatively small and prone to surface cracks for baseplate; during construction period, much more attention should be payed to the high temperature difference between day and night, and to the insulation work at cold and windy weather; the key problem is that the middle pier which faces relatively great cracking risk, and necessary temperature control measures should be adopted.


2020 ◽  
Vol 38 (1A) ◽  
pp. 25-32
Author(s):  
Waleed Kh. Jawad ◽  
Ali T. Ikal

The aim of this paper is to design and fabricate a star die and a cylindrical die to produce a star shape by redrawing the cylindrical shape and comparing it to the conventional method of producing a star cup drawn from the circular blank sheet using experimental (EXP) and finite element simulation (FES). The redrawing and drawing process was done to produce a star cup with the dimension of (41.5 × 34.69mm), and (30 mm). The finite element model is performed via mechanical APDL ANSYS18.0 to modulate the redrawing and drawing operation. The results of finite element analysis were compared with the experimental results and it is found that the maximum punch force (39.12KN) recorded with the production of a star shape drawn from the circular blank sheet when comparing the punch force (32.33 KN) recorded when redrawing the cylindrical shape into a star shape. This is due to the exposure of the cup produced drawn from the blank to the highest tensile stress. The highest value of the effective stress (709MPa) and effective strain (0.751) recorded with the star shape drawn from a circular blank sheet. The maximum value of lamination (8.707%) is recorded at the cup curling (the concave area) with the first method compared to the maximum value of lamination (5.822%) recorded at the cup curling (the concave area) with the second method because of this exposure to the highest concentration of stresses. The best distribution of thickness, strains, and stresses when producing a star shape by


2012 ◽  
Vol 586 ◽  
pp. 269-273
Author(s):  
Chul Su Kim ◽  
Gil Hyun Kang

To assure the safety of the power bogies for train, it is important to perform the durability analysis of reduction gear considering a variation of velocity and traction motor capability. In this study, two types of applied load histories were constructed from driving histories considering the tractive effort and the train running curves by using dynamic analysis software (MSC.ADAMS). Moreover, this study was performed by evaluating fatigue damage of the reduction gears for rolling stock using durability analysis software (MSC.FATIGUE). The finite element model for evaluating the carburizing effect on the gear surface was used for predicting the fatigue life of the gears. The results showed that the fatigue life of the reduction gear would decrease with an increasing numbers of stops at station.


2014 ◽  
Vol 721 ◽  
pp. 131-134
Author(s):  
Mi Mi Xia ◽  
Yong Gang Li

To research the load upper bracket of Francis hydroelectric unit, then established the finite-element model, and analyzed the structure stress of 7 operating condition points with the ANSYS software. By the strain rosette test, acquired the data of stress-strain in the area of stress concentration of the upper bracket. The inaccuracy was considered below 5% by analyzing the contradistinction between the finite-element analysis and the test, and match the engineering precision and the test was reliable. The finite-element method could be used to judge the stress of the upper bracket, and it could provide reference for the Structural optimization and improvement too.


2013 ◽  
Vol 419 ◽  
pp. 122-126
Author(s):  
Li Zhang ◽  
Chen Kai ◽  
Xue Jiao Wang

The industrial sewing machine frame is one of the most important components of the sewing machine system, so studying its dynamic characteristics is particularly important. In this paper, based on the 3D model, the theory modal analysis of the industrial sewing machine is conducted with ABAQUS software and the modal experiment analysis is carried out through LMS(Lab Impact Testing system). The experimental results are in good consistency, which shows that the finite element model built in the paper is reasonable. This paper provides theoretical reference for vibration and noise reduction of the industrial sewing machine.


Author(s):  
Liu Ruiwei ◽  
Hongwei Guo ◽  
Zhang Qinghua ◽  
Rongqiang Liu ◽  
Tang Dewei

Balancing stiffness and weight is of substantial importance for antenna structure design. Conventional fold-rib antennas need sufficient weight to meet stiffness requirements. To address this issue, this paper proposes a new type of cable-rib tension deployable antenna that consists of six radial rib deployment mechanisms, numerous tensioned cables, and a mesh reflective surface. The primary innovation of this study is the application of numerous tensioned cables instead of metal materials to enhance the stiffness of the entire antenna while ensuring relatively less weight. Dynamic characteristics were analyzed to optimize the weight and stiffness of the antenna with the finite element model by subspace method. The first six orders of natural frequencies and corresponding vibration modes of the antenna structure are obtained. In addition, the effects of structural parameters on natural frequency are studied, and a method to improve the rigidity of the deployable antenna structure is proposed.


2012 ◽  
Vol 268-270 ◽  
pp. 737-740
Author(s):  
Yang Yu ◽  
Yi Hua Dou ◽  
Fu Xiang Zhang ◽  
Xiang Tong Yang

It is necessary to know the connecting and sealing ability of premium connection for appropriate choices of different working conditions. By finite element method, the finite element model of premium connection is established and the stresses of seal section, shoulder zone and thread surface of tubing by axial tensile loads are analyzed. The results show that shoulder zone is subject to most axial stresses at made-up state, which will make distribution of stresses on thread reasonable. With the increase of axial tensile loads, stresses of thread on both ends increase and on seal section and shoulder zone slightly change. The maximum stress on some thread exceed the yield limit of material when axial tensile loads exceed 400KN. Limited axial tensile loads sharply influence the contact pressures on shoulder zone while slightly on seal section. Although the maximum contact pressure on shoulder zone drop to 0 when the axial tensile load is 600KN, the maximum contact pressure on seal section will keep on a high level.


Author(s):  
Zhenguo Lu ◽  
Lirong Wan ◽  
Qingliang Zeng ◽  
Xin Zhang ◽  
Kuidong Gao

Conical picks are the key cutting components used on roadheaders, and they are replaced frequently because of the bad working conditions. Picks did not meet the fatigue life when they were damaged by abrasion, so the pick fatigue life and strength are excessive. In the paper, in order to reduce the abrasion and save the materials, structure optimization was carried out. For static analysis and fatigue life prediction, the simulation program was proposed based on mathematical models to obtain the cutting resistance. Furthermore, the finite element models for static analysis and fatigue life analysis were proposed. The results indicated that fatigue life damage and strength failure of the cutting pick would never happen. Subsequently, the initial optimization model and the finite element model of picks were developed. According to the optimized results, a new type of pick was developed based on the working and installing conditions of the traditional pick. Finally, the previous analysis methods used for traditional methods were carried out again for the new type picks. The results show that new type of pick can satisfy the strength and fatigue life requirements.


Sign in / Sign up

Export Citation Format

Share Document