scholarly journals Carbapenemase production in hospital isolates of multidrug-resistant Klebsiella pneumoniae and Escherichia coli in Serbia

2017 ◽  
Vol 74 (8) ◽  
pp. 715-721 ◽  
Author(s):  
Anika Trudic ◽  
Zora Jelesic ◽  
Mira Mihajlovic-Ukropina ◽  
Deana Medic ◽  
Branka Zivlak ◽  
...  

Background/Aim. Carbapenem resistance has escalated in medically important enterobacteria such as Klebsiella pneumoniae and Escherichia coli worldwide. Multidrug-resistant strains represent an important source of concern as effective therapeutic options of infections they cause are limited or none. There were no comprehensive studies considering the presence of carbapenemase production in enterobacteria in Serbia so far. The aim of the study was to determine carbapenemase production in hospital isolates of multidrug-resistant K. pneumoniae and E. coli in Serbia. Methods. Strains of K. pneumoniae and E. coli resistant to at least one carbapenem (imipenem, meropenem, ertapenem) were collected from November 2013 to May 2014. Isolates were obtained from clinical samples of patients treated in 14 hospitals in Serbia. Carbapenem resistance was confirmed using phenotypic tests and polymerase chain reaction (PCR) in National Reference Laboratory for Registration and Surveillance of Antimicrobial Resistance of Bacterial Strains in Novi Sad. Results. Of 129 collected strains, 121 (93.8%) were K. pneumoniae and 8 (6.2%) were E. coli. Seventy (54.3%) strains were obtained from urine, 26 (20.2%) from blood, 19 (14.7%) from wound secretions and 14 (10.9%) from lower respiratory tract secretions. Carbapenemase genes were detected in 58 (45%) isolates. The gene bla New Delhimetallo-beta-lactamases (blaNDM) was found in 33 (27.3%) K. pneumoniae, bla oxacillinases-48 (blaOXA-48) in 10 (8.3%), bla K. pneumonia carbapenemase (blaKPC) in 1 (0.8%), and 7 (5.4%) strains harbored both blaOXA-48 and blaNDM. Seven E.coli harbored blaNDM gene. Conclusions. In Serbia, the most common type of carbapenemase in both multidrug-resistant K. pneumoniae and E. coli is NDM. Co-production of OXA-48 and NDM was found in K. pneumoniae. To our knowledge, KPC production was detected for the first time in Serbia.

2020 ◽  
Author(s):  
Abebe Aseffa Negeri ◽  
Eyasu Tigabu Seyoum ◽  
Dejenie Shiferaw Taklu ◽  
Estifanos Tsige ◽  
Dawit Assefa ◽  
...  

Abstract Background Extended-spectrum beta-lactamases (ESBL) producing Enterobacteriaceae are prevalent worldwide and they are unique challenges for treatment and control of bacterial infectious diseases. ESBL genes not only confer resistance to oximino-cephalosporins and aztreonum but also, they are multidrug-resistant to other commonly available antimicrobial agents used in clinical practice.Objective To determine the prevalence and antimicrobial susceptibility profile of ESBL producing Enterobacteriaceae isolated from clinical samples referred to the national clinical bacteriology and mycology reference laboratory.Materials and Methods A cross-sectional study was conducted on Enterobacteriaceae culture- positive clinical samples that were referred to the national bacteriology and mycology reference laboratory from August 2018 to July 2019. Bacterial isolation was performed according to the inoculation and incubation conditions of each clinical specimen and identifications of the isolates were performed using standardized biochemical tests for gram-negative bacteria. Antimicrobial susceptibility profiles of these cultures were determined using the disk diffusion method on Muller Hinton agar according to the recommendation by Clinical and Laboratory Standard Institute (CLSI). ESBL production was detected using CLSI Screening and confirmation test. A double-disk synergy test was used for confirmation.Results Out of 371 culture positive for Enterobacteriaceae , 240 (64.7%) were positive for ESBL production, and the most prevalent species were Klebsiella sp 131(54.6%) followed by E. coli 79 (32.9%). Of 131 ESBL positive Klebsiella spp, 95 (72.5%) were obtained from blood samples and among 79 E. coli isolates, 51 (64.6%) of the strains were isolated from urine samples. All ESBL positive isolates were resistant to ampicillin and all generation of cephalosporins. In addition, 100% of them were multidrug resistant. There were also high proportions of resistant ESBL positive isolates to other classes of antimicrobial agents. Less resistance rates were documented for carbapenems drugs and amikacin from the class of aminoglycosides.Conclusion ESBL producing Enterobacteriaceae we reported in this study was not only highly prevalent but also they are multidrug resistant to most clinically available antimicrobial agents including carbapenems. Therefore, public awareness and regular monitoring


2019 ◽  
Vol 24 (37) ◽  
Author(s):  
Nicholas Ellaby ◽  
Michel Doumith ◽  
Katie L Hopkins ◽  
Neil Woodford ◽  
Matthew J Ellington

Background Escherichia coli ST131, a global, high-risk clone, comprises fluoroquinolone resistance (FQ-R) mutations and CTX-M extended-spectrum beta-lactamases associated with the fimH30-encoding clades, C1 and C2. Further carbapenem resistance development in ST131 is a public health concern. Aim This observational study aimed to probe the diversity of carbapenemase-producing E. coli (CP E. coli) ST131 across England. Methods ST131 isolates were identified using whole-genome sequencing (WGS) data generated for all non-duplicate CP E. coli from human samples submitted to the national reference laboratory from January 2014 to June 2016. Antimicrobial resistance (AMR) gene content and single nucleotide polymorphism (SNP) data were compared against a published ST131 phylogeny and analysed alongside patient metadata. Results Thirty-nine genetically diverse ST131 CP E. coli, from eight of nine regions, represented 10% of CP E. coli isolates sequenced. Ten and eight isolates were from the FQ-susceptible (FQ-S) clades A and B, while eight and 15 isolates belonged to the FQ-R clades C1 or C2, respectively. Seven distinct carbapenemases were identified: KPC-2 (21 isolates, 6 regions) frequently occurred among clade C2 isolates (n = 10). OXA-48-producers (10 isolates, 3 regions) were often from clade A (n = 5). NDM-1 (n = 4), NDM-5 (n = 1), VIM-1 (n = 1), VIM-4 (n = 1) and OXA-181 (n = 1) were also identified. Clade C2 isolates encoded more AMR genes than those from clades A (p = 0.02), B (p = 9.6 x 10−3) or C1 (p = 0.03). Conclusion When compared with its global predominance among ESBL-E. coli, ST131 represented a fraction of the CP E. coli received, belonging to diverse clades and encoding diverse carbapenemases. The greater accumulation of resistance genes in clade C2 isolates highlights the need for ongoing monitoring of this high-risk lineage.


2022 ◽  
Vol 67 (4) ◽  
pp. 170-180
Author(s):  
Kamal Ismael Bakr ◽  
Sherko Muhammed Abdul-Rahman ◽  
Rebwar Muhammad Hamasalih

The rising occurrence of infections generated by Escherichia coli and Klebsiella pneumoniae that produce extended-spectrum β-lactamase (ESBL) is reason for concern. Due to the recent emergence of multidrug-resistant microorganisms that develop ESBL. The purpose of this work was to detect the ESBLs in clinical isolates of E. coli and K. pneumoniae. 118 samples of E. coli and 63 isolates of K. pneumoniae were collected from clinical samples. Polymerase chain reaction was used to detect β-lactamase genes (i.e., blaTEM, blaSHV, and blaCTX-M). Phenotypic detection revealed that 48.31% and 85.19% of E. coli and K. pneumoniae produced ESBLs, respectively. Whereas screening of ESBL genes in both bacteria employing a multiplex PCR test revealed that 24.58% of the ESBL-producing E. coli strains contained blaTEM, 50.85% contained blaSHV, and 32.2% contained blaCTX-M. Nevertheless, in K. pneumoniae, 40.74% blaTEM, 35.19% blaSHV, and 64.81% blaCTX-M genes were present. Antimicrobial resistance profiles of E. coli and K. pneumoniae isolates to twenty antibiotics were observed to vary significantly. Additionally, it was determined that the majority of E. coli and K. pneumoniae isolates were multidrug resistant (MDR). Additionally, 80.51% of E. coli isolates were resistant to the AMC antibiotic, while 0.00% were resistant to IPM and MEM. From the other hand, the resistant proportion of K. pneumoniae isolates was heterogeneous, ranging from 69.84% against CAZ to 0.00% against CIP and G antibiotics. The blaSHV gene was the most widespread among different forms of ESBLs in E. coli, but the most common gene in K. pneumoniae isolates was blaCTX-M (64.81%).


2008 ◽  
Vol 52 (6) ◽  
pp. 2014-2018 ◽  
Author(s):  
Jia Chang Cai ◽  
Hong Wei Zhou ◽  
Rong Zhang ◽  
Gong-Xiang Chen

ABSTRACT Twenty-one Serratia marcescens, ten Klebsiella pneumoniae, and one Escherichia coli isolate with carbapenem resistance or reduced carbapenem susceptibility were recovered from intensive care units (ICUs) in our hospital. Enterobacterial repetitive intergenic consensus-PCR and pulsed-field gel electrophoresis demonstrated that all the S. marcescens isolates belonged to a clonal strain and the 10 K. pneumoniae isolates were indistinguishable or closely related to each other. The MICs of imipenem, meropenem, and ertapenem for all isolates were 2 to 8 μg/ml, except for K. pneumoniae K10 (MICs of 128, 256, and >256 μg/ml). Isoelectric focusing, PCRs, and DNA sequencing indicated that all S. marcescens isolates produced KPC-2 and a β-lactamase with a pI of 6.5. All K. pneumoniae isolates produced TEM-1, KPC-2, CTX-M-14, and a β-lactamase with a pI of 7.3. The E. coli E1 isolate produced KPC-2, CTX-M-15, and a β-lactamase with a pI of 7.3. Conjugation studies with E. coli (EC600) resulted in the transfer of reduced carbapenem susceptibility compared to that of the original isolates, and only the bla KPC-2 gene was detected in E. coli transconjugants. Plasmid restriction analysis showed identical restriction patterns among all E. coli transconjugants. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and ompK35/36 gene sequence analysis of outer membrane proteins revealed that K. pneumoniae K10 failed to express OmpK36, because of insertional inactivation by an insertion sequence ISEcp1. All these results indicate that KPC-2-producing S. marcescens, K. pneumoniae, and E. coli isolates emerged in ICUs in our hospital. KPC-2 combined with porin deficiency results in high-level carbapenem resistance in K. pneumoniae. The same bla KPC-2-encoding plasmid was spread among the three different genera.


2021 ◽  
Vol 8 (9) ◽  
pp. 396-407
Author(s):  
Sheriff Wakil ◽  
Mustafa Alhaji Isa ◽  
Adam Mustapa

Multidrug resistance among Escherichia coli causing urinary tract infections (UTIs) and diarrhea are major public health problem worldwide which cause difficulty in treating the infections caused by Escherichia coli due to the high resistances. The study is aimed to determine the phenotypic and molecular detection of multidrug resistant E. coli isolated from clinical samples of patients attending selected Hospitals in Damaturu, Yobe State-Nigeria. Methods: Two hundred (200) clinical samples were collected aseptically from patient diagnosed with (100 stool samples) and UTI’s (100 urine samples) using sterile universal container. The samples were processed using standard microbiological methods for identification of E. coli. Samples were cultured on MacConkey agar (stool) and Cystine lactose electrolyte deficient agar (urine). The resulting colonies of isolates were further subculture on Eosin methylene blue agar for confirmatory and followed by gram stain, biochemical identification at Microbiology laboratory unit of Yobe State Specialist and Yobe State Teaching Hospital respectively. The antimicrobial susceptibility patterns were determined using Kirby-Bauer disc diffusion techniques and the phenotypic expression of extended spectrum beta-lactamases (ESBLs) were determined using modified double disc synergy test (MDDST) and also the three (3) resistance genes (blaTEM, accC1 and qnrA) were detected using polymerase chain reaction. Results: One hundred and twenty-two (122) isolates were resistant to antibiotics. The highest level of resistance was against amoxicillin (90.2%) while the least resistance was against sparfloxacin (24.3%). Thirty-seven (37) E. coli isolates shows MDR; the highest MDR was (24.3%) while least MDR was (5.4%). The PCR amplification of resistant genes (blaTEM, accC1 and qnrA) were detected on E. coli that shows positive ESBL and the bands were separated using agarose gel electrophoresis. Conclusion: The findings of this study show augmentin, ciprofloxacin and sparfloxacin are the most effective antibiotics against E. coli isolated from patients attending the two hospitals in Damaturu; who are diagnose with UTI and diarrheic infection. The resistant genes include; blaTEM, accC1 and qnrA coding for beta-lactam, aminoglycoside and quinolones were present in E. coli isolated from patients attending selected Hospitals in Yobe State, Nigeria. Keywords: Multidrug resistant, Escherichia coli, extended spectrum beta lactamase, resistance-associated genes, urinary tract infections, diarrheic.


2019 ◽  
Vol 36 (2) ◽  
Author(s):  
Sumbal Nosheen ◽  
Nadeem Irfan Bukhari ◽  
Hasan Ejaz ◽  
Nasir Abbas

Objective: To gauge the recent breadth of MDR E. coli along with antibiogram of carbapenemase producing (CP) E. coli among children from an institute which receives patients from all over Punjab. Methods: The bacterial strains of E. coli isolated from various specimens of patients were collected from April 2017 to August 2018 and processed using standard biochemical tests and API 20E system (bioMerieux). Phenotypic screening for CP E. coli was done by the modified Hodge test, whereas antibiotic susceptibility testing was done with Kirby-Bauer disc diffusion technique. Results: Total of 6,468 bacterial strains were isolated, out of which 1,552 (24%) were E. coli. Carbapenem resistance was observed in 245 (16%) strains, amongst which 113 (46%) were confirmed to be CP. E. coli isolated from males were higher as compared to females (p<0.05). Majority of the organisms were isolated from blood (37.2%) samples. The hospital discharged about 65% of patients, while 23% left against medical advice. Overall MDR amongst E. coli was 93.26%. Colistin sulphate (15.9%) and nitrofurantoin (16.8%) showed the most efficacy followed by amikacin (15%) and fosfomycin (10.6%). Conclusion: The isolation of high number of MDR E. coli amongst the paediatric patients is worrisome, which could serve as a potential source of horizontal genes transfer to other genera. doi: https://doi.org/10.12669/pjms.36.2.928 How to cite this:Nosheen S, Bukhari NI, Ejaz H, Abbas N. Antibiogram and recent incidence of multi-drug resistant carbapenemase producing Escherichia coli isolated from paediatric patients. Pak J Med Sci. 2020;36(2):---------. doi: https://doi.org/10.12669/pjms.36.2.928 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2012 ◽  
Vol 64 (2) ◽  
pp. 465-470 ◽  
Author(s):  
C.A.S. Vidal ◽  
E.O. Sousa ◽  
Fabíola Rodrigues ◽  
Adriana Campos ◽  
S.R. Lacerda ◽  
...  

This work is the first to describe the modulation of antibiotic activity of the bryophyte Octoblepharum albidum Hedw extract. The antibacterial activity of ethanolic extract of O. albidum (EEOa), alone and in association with aminoglycosides, was determined against six bacterial strains by a microdilution test. The results showed a similar inhibitory activity of EEOa against Escherichia coli ATCC 25922 and Klebsiella pneumoniae ATCC 33018 (MICs 512 ?g/mL). The synergistic effect of the extracts and aminoglycosides was also verified. The most pronounced effects were obtained with EEOa + gentamicin against E. coli and EEOa + kanamycin against K. pneumoniae with MICs reduction (128 to 32 ?g/mL). The data from this study are indicative of the antibacterial activity of the bryophyte O. albidum extracts and its potential in modifying the resistance of aminoglycosides analyzed.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ngom B ◽  
◽  
Wade SF ◽  
Diop TA ◽  
Diagne R ◽  
...  

Introduction: Some strains of Escherichia coli and Klebsiella pneumoniae produce Extended Spectrum Beta-Lactamases (ESBL) may be responsible for various infections such as urinary infections. These Sick people are treated in the very serious cases by association antibiotics to class to betalactamins, aminosids and quinolons. But proliferation of multi-drug resistant strains involves decreasing therapeutic success. That’s why epidemiological study must be done in all laboratories of bacteriology. Purpose: The aim of the study was to research the resistance phenotypes of our E. coli and K. pneumoniae ESBL strains compared to others families of antibiotics. Material and methods: Thirty two (32) Extended Spectrum betalactamases E. coli and K. pneumoniae strains isolated from either hospitalized patients or sick people who came for consultation were studied. Susceptibility to antimicrobial agents was determined using an antibiotic disk (Bio-Rad) diffusion method on Mueller-Hinton agar (Bio-Rad). The results were interpreted according to the Standards of the French Antibiogram Committee (CA-SFM). Results: The study showed that most of these strains were multi-drug resistant. They were resistant to many beta-lactamines antibiotics. E. coli strains were also resistant at 70,34% to aminosids, at 96,72% to quinolons, at 58,3% to cotrimoxazol, at 26,1% to chloramphénicol and at 21,4% to colistin ; about K. pneumoniae, they were resistant at 72,6% to aminosids, at 88,95% to quinolons, at 86,7% to cotrimoxazol, at 44,4% to chloramphénicol and at 25% to colistin. But all these strains were sensitive at 100% to l’imipenem.


2021 ◽  
Vol 7 (1) ◽  
pp. 8
Author(s):  
Ni Luh Ranthi Kurniawathi ◽  
Indramawan Setyojatmiko ◽  
Ni Nyoman Sri Budayanti

Resistesi antibiotik meningkat secara global dalam beberapa tahun ini, terutama kejadian Escherichia coli (E.coli) dan Klebsiella pneumoniae (K.pneumoniae) penghasil Extended Spektrum Beta Lactamases (ESBL). Tujuan dari penelitian ini adalah untuk memberikan gambaran prevalensi keberadaan dan antibiogram isolat E.coli dan K. pneumoniae penghasil ESBL di rumah sakit tersier di Bali. Penelitian retrospektif potong lintang ini dlikaukan pada Januari 2018- Desember 2020 di Rumah Sakit Umum Pusat Sanglah, Bali. Identifikasi bakteri dan uji sensitivitas antibiotik dilakukan dengan alat otomatis Vitek®2 Compact. Hasil penelitian menunjukkan dari 2972 isolat, 1067 (63,82%) isolat adalah E. coli penghasil ESBL dan 902 isolat (69,39%) adalah K. pneumoniae penghasil ESBL. Isolat penghasil ESBL ditemukan terbanyak pada non-ICU (89,39%). Bakteri E.coli penghasil ESBL menunjukkan sensitivitas > 80% terhadap Amikacin, Ertapenem, Meropenem, Nitrofurantoin, Piperacillin-tazobactam, dan Tigecycline. Sedangkan, K. pneumoniae penghasil ESBL menunjukkan sensitivitas > 80% terhadap Amikacin, Ertapenem, Meropenem, dan Tigecycline. Penelitian ini menyoroti tingginya prevalensi E.coli dan K.pneumoniae penghasil ESBL di rumah sakit rujukan tersier di Bali. Analisis yang seksama dari antibiogram kedua spesies penghasil ESBL tersebut akan membantu menyusun kebijakan penggunaan antibiotik dan pencegahan, pengendalian penyebaran bakteri penghasil ESBL.Kata Kunci: Escherichia coli; Klebsiella pneumoniae; Extended Spectrum Beta Lactamases; ICU dan Non-ICU


2019 ◽  
Vol 8 (34) ◽  
Author(s):  
Gregory H. Tyson ◽  
Cong Li ◽  
Olgica Ceric ◽  
Renate Reimschuessel ◽  
Stephen Cole ◽  
...  

The carbapenem resistance gene bla NDM-5 was identified in an Escherichia coli strain isolated from a dog. We report here the complete genome sequence of this E. coli strain; the bla NDM-5 gene was present on a large IncFII multidrug-resistant plasmid. This is the first bla NDM-5-carrying E. coli strain from an animal in the United States.


Sign in / Sign up

Export Citation Format

Share Document