scholarly journals Antitumor Efficacy of Doxorubicin in Combination with Cisplatin on Human Lymphoma Cells at Various Cell Densities in vitro.

1991 ◽  
Vol 40 (2) ◽  
pp. 78-81
Author(s):  
Yuzuru Takemura ◽  
Takao Ohnuma ◽  
Susumu Sekiguchi
Blood ◽  
1993 ◽  
Vol 82 (1) ◽  
pp. 262-267 ◽  
Author(s):  
R Stauder ◽  
S Hamader ◽  
B Fasching ◽  
G Kemmler ◽  
J Thaler ◽  
...  

The interaction of human lymphoma cells with high endothelial venules (HEVs) on sections of lymphatic tissues was studied in 44 cases of non- Hodgkin's lymphoma (NHL) with the in vitro HEV binding assay. The relative adherence ratio (RAR) of lymphoma cells to HEVs as related to that of reactive lymphocytes was 0.29 to 4.64 in 38 cases of B chronic lymphocytic leukemia (CLL), 1.15 and 1.54 in two cases of immunocytic NHL, 1.12 and 0.70 in two cases of centrocytic NHL, 1.98 in one case of a peripheral T-NHL, whereas plasma cell leukemia cells adhered very weakly (RAR 0.1). Among the patients suffering from CLL a pronounced HEV binding ability of tumor cells correlated significantly with the more unfavorable Binet stages B and C (median 1.32) as well as with a widespread lymphatic dissemination, which strongly indicates a hematogenous, HEV-mediated spread (median 1.34). In contrast, weak adherence to HEVs was associated with Binet stage A (median 0.85; P < .05) and with a lacking or only localized clinical involvement of lymph nodes (median 0.84; P < .01). Thus, specific HEV recognition processes even operate in lymphoid neoplasms and via this mechanism seem to influence the dissemination of tumors.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Melanie Ostermann ◽  
Alexander Sauter ◽  
Ying Xue ◽  
Eivind Birkeland ◽  
Julia Schoelermann ◽  
...  

AbstractThe development of reliable and cost-efficient methods to assess the toxicity of nanomaterials (NMs) is critical for the proper identification of their impact on human health and for ensuring a safe progress of nanotechnology. In this study, we investigated the reliability and applicability of label-free impedance flow cytometry (IFC) for in vitro nanotoxicity screening, which avoids time-consuming labelling steps and minimizes possible NM-induced interferences. U937 human lymphoma cells were exposed for 24 h to eight different nanomaterials at five concentrations (2, 10, 20, 50, and 100 μg/mL). The NMs’ effect on viability was measured using IFC and the results were compared to those obtained by trypan blue (TB) dye exclusion and conventional flow cytometry (FC). To discriminate viable from necrotic cells, the IFC measurement settings regarding signal trigger level and frequency, as well as the buffer composition, were optimised. A clear discrimination between viable and necrotic cells was obtained at 6 MHz in a sucrose-based measurement buffer. Nanomaterial-induced interferences were not detected for IFC. The IFC and TB assay results were in accordance for all NMs. The IFC was found to be robust, reliable and less prone to interferences due to the advantage of being label-free.


2004 ◽  
Vol 24 (14) ◽  
pp. 6205-6214 ◽  
Author(s):  
Baolin Zhang ◽  
Yaqin Zhang ◽  
Emily Shacter

ABSTRACT The small GTPase Rac1 has emerged as an important regulator of cell survival and apoptosis, but the mechanisms involved are not completely understood. In this report, constitutively active Rac1 is shown to stimulate the phosphorylation of the Bcl-2 family member Bad, thereby suppressing drug-induced caspase activation and apoptosis in human lymphoma cells. Rac1 activation leads to human Bad phosphorylation specifically at serine-75 (corresponding to murine serine-112) both in vivo and in vitro. Inhibition of constitutive and activated Rac1-induced Bad phosphorylation by a cell-permeable competitive peptide inhibitor representing this Bad phosphorylation site sensitizes lymphoma cells to drug-induced apoptosis. The data show further that endogenous protein kinase A is a primary catalyst of cellular Bad phosphorylation in response to Rac activation, while Akt is not involved. These findings define a mechanism by which active Rac1 promotes lymphoma cell survival and inhibits apoptosis in response to cancer chemotherapy drugs.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3713-3713
Author(s):  
James A Torchia ◽  
Patrick P Ng ◽  
Homer Chen ◽  
Holbrook E Kohrt ◽  
Aurelien Marabelle ◽  
...  

Abstract Abstract 3713 Background: The complementarity determining region, or idiotype, of the surface immunoglobulin receptor is a tumor-specific marker on B-cell lymphomas that is unique to each patient. Antibodies against idiotype can induce complete regression of lymphoma in patients, but since this therapeutic approach requires the generation of a custom monoclonal antibody for each patient, it has not been practical. Objective: Here we describe a method for targeting the idiotype on the surface of a B-cell lymphoma by using synthetic idiotype-ligands covalently linked to a recombinant IgG Fc domain (Figure 1A). These peptide idiotype-ligands can be identified through oligopeptide library screens and produced inexpensively by automated solid-phase synthesis. Linkage of idiotype-ligands to the Fc domain serves two purposes: to enhance their pharmacokinetics and to augment their anti-tumor effect by activating immune effector functions. Since each patient-specific peptide can be chemically linked to a common IgG Fc domain, this modular construct design yields a patient-specific therapeutic that does not require the production of a custom biologic macromolecule for each patient. Results: Idiotype peptide-ligands were produced by solid-phase synthesis and covalently linked to the amino-terminus of a recombinant mouse IgG2a Fc domain by native chemical ligation, a method for site-selective polypeptide ligation. The resulting peptibody demonstrated targeted killing of a human lymphoma cell line in vitro by crosslinking surface immunoglobulin and triggering activation-induced death. Additionally, the peptibody triggered complement-mediated cytotoxicity of opsonized lymphoma cells in vitro and activated natural killer cells co-cultured with opsonized lymphoma cells. The peptibody exhibited a favorable pharmacokinetic profile and peptibody treatment was sufficient to clear tumor in SCID mice challenged intravenously with a luciferase-labeled human lymphoma cell line (p = 0.0018; Figure 1B-D). Conclusions: Idiotype-specific peptibodies demonstrate multimodal activity against lymphoma cells in vitro and clear human lymphoma in a disseminated xenograft model. The modular design of this therapeutic may enable a personalized and targeted therapy that is feasible to produce for patients with B-cell lymphoma. Disclosures: No relevant conflicts of interest to declare.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3398
Author(s):  
Kohei Yoshimura ◽  
Shinji Kawabata ◽  
Hideki Kashiwagi ◽  
Yusuke Fukuo ◽  
Koji Takeuchi ◽  
...  

Background: Boron neutron capture therapy (BNCT) is a nuclear reaction-based tumor cell-selective particle irradiation method. High-dose methotrexate and whole-brain radiation therapy (WBRT) are the recommended treatments for primary central nervous system lymphoma (PCNSL). This tumor responds well to initial treatment but relapses even after successful treatment, and the prognosis is poor as there is no safe and effective treatment for relapse. In this study, we aimed to conduct basic research to explore the possibility of using BNCT as a treatment for PCNSL. Methods: The boron concentration in human lymphoma cells was measured. Subsequently, neutron irradiation experiments on lymphoma cells were conducted. A mouse central nervous system (CNS) lymphoma model was created to evaluate the biodistribution of boron after the administration of borono-phenylalanine as a capture agent. In the neutron irradiation study of a mouse PCNSL model, the therapeutic effect of BNCT on PCNSL was evaluated in terms of survival. Results: The boron uptake capability of human lymphoma cells was sufficiently high both in vitro and in vivo. In the neutron irradiation study, the BNCT group showed a higher cell killing effect and prolonged survival compared with the control group. Conclusions: A new therapeutic approach for PCNSL is urgently required, and BNCT may be a promising treatment for PCNSL. The results of this study, including those of neutron irradiation, suggest success in the conduct of future clinical trials to explore the possibility of BNCT as a new treatment option for PCNSL.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1695-1695
Author(s):  
Diane L Nordstrom ◽  
Edmund A Rossi ◽  
David M. Goldenberg ◽  
Chien-Hsing Chang

Abstract Abstract 1695 Poster Board I-721 Background IFN-á2 is indicated for the therapy of a variety of hematopoietic tumors. As with most cytokines, the short serum half-life and severe side effects of IFN-á2 are major factors affecting its dosing schedule and efficacy. Fusion or conjugation of IFN-á2 to a tumor-targeting IgG has the potential to enhance in vivo potency due to increased tumor localization and more favorable pharmacokinetics. We have recently demonstrated that 20-2b, a monospecific immunocytokine generated by the dock-and-lock (DNL) method to comprise tetrameric IFN-á2b covalently linked to veltuzumab, a humanized anti-CD20 mAb, exhibited very potent anti-tumor activity in vitro and in human lymphoma xenografts (Rossi et al., Blood, in press). However, lymphomas and leukemias that express little or no CD20 are expected to be resistant to therapy with 20-2b. HLA-DR is expressed on many hematopoietic tumors and some solid cancers. A bispecific immunocytokine that could target IFN-á to both CD20 and HLA-DR might be a more effective therapeutic against a wide variety of hematopoietic malignancies, including those that express CD20, HLA-DR, or both. Since each component of the multifunctional complex (veltuzumab, anti-HLA-DR F(ab)2, and IFN-á2b) has anti-tumor activity independently, we evaluated if the bispecific immunocytokine can potentially be even more potent than the monospecific immunocytokine, 20-2b. Methods One strategy of the modular DNL method is to fuse either the dimerization-and-docking domain (DDD) derived from protein kinase A, or the anchoring domain (AD) of a cognate A-kinase anchoring protein, to a biological entity, resulting in respective DDD- and AD-modules that are readily combined to quantitatively generate stably-tethered structures of defined composition with retained bioactivity. We have selectively combined recombinant DDD-modules of both IFN-á2b and anti-HLA-DR Fab (derived from humanized L243) together with a recombinant AD-module of anti-CD20 IgG (veltuzumab) to generate the first bispecific antibody-based immunocytokine, designated 20-C2-2b, which comprises two copies of IFN-á2b and a stabilized F(ab)2 of hL243 site-specifically linked to veltuzumab. Results Each of the three modules, veltuzumab-AD, hL243-Fab-DDD, and IFN-á2b-DDD, was produced recombinantly in separate myeloma cell cultures. Combining equimolar amounts of the three modules under mild redox conditions resulted in the formation of 20-C2-2b, which was purified by sequential chromatographic processes involving Protein A, IMAC and anion exchange chromatography to remove potential side-products such as 20-2b and 20-C2 (the hexavalent bispecific antibody comprising veltuzumab and four Fabs of hL243). Size-exclusion HPLC analysis indicated a major peak of a retention time consistent with a ∼310 kDa protein. Reducing SDS-PAGE of 20-C2-2b revealed the presence of all three constituents. The complex was immunoreactive with an anti-IFN-á2b, an anti-idiotype to hL243, as well as an anti-idiotype to veltuzumab, and showed increased binding to Raji lymphoma cells compared to either veltuzumab or hL243. More importantly, 20-C2-2b was found to be extremely cytotoxic to Daudi, an IFNá-sensitive Burkitt lymphoma cell line, having an IC50 = 0.035 pM, which was 100,000-fold more potent than hL243 IgG, 100-fold more potent than a combination of veltuzumab, hL243 IgG and a structural analog comprising an irrelevant IgG and IFN-á2b, and 5-fold more potent than 20-2b. In the same assay, we have also determined that 20-C2-2b was about 2-fold more potent than C2-2b, which comprises hL243 IgG linked to four molecules of IFN-á2b. Conclusions The DNL method provides a modular approach to enable the creation of novel multifunctional complexes. Based on our experience with 20-2b, the bispecific immunocytokine 20-C2-2b is expected to have greater in vivo potency than IFN-á due to improved pharmacokinetics and endowed targeting specificity, and may potentially be useful for therapy of a variety of hematopoietic tumors that express either CD20 or HLA-DR. Disclosures Nordstrom: Immunomedics, Inc.: Employment. Rossi:Immunomedics, Inc: Employment. Goldenberg:Immunomedics Inc.: Consultancy, Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Chang:Immunomedics Inc.: Employment.


2019 ◽  
Vol 385 (1) ◽  
pp. 111623 ◽  
Author(s):  
Lulu Cao ◽  
Cui Yang ◽  
Bingmei Zhu ◽  
Guoying Zhang ◽  
Ning Zhao ◽  
...  

2010 ◽  
Vol 999 (999) ◽  
pp. 1-11
Author(s):  
P. Ulivi ◽  
C. Arienti ◽  
W. Zoli ◽  
M. Scarsella ◽  
S. Carloni ◽  
...  

2020 ◽  
Vol 20 (6) ◽  
pp. 715-723
Author(s):  
Natarajan Nandakumar ◽  
Pushparathinam Gopinath ◽  
Jacob Gopas ◽  
Kannoth M. Muraleedharan

Background: The authors investigated the NF-κB inhibitory role of three Benzisothiazolone (BIT) derivatives (1, 2 and 3) in Hodgkin’s Lymphoma cells (L428) which constitutively express activated NF-κB. All three compounds showed dose-dependent NF-κB inhibition (78.3, 70.7 and 34.6%) in the luciferase reporter gene assay and were found cytotoxic at IC50 values of 3.3μg/ml, 4.35μg/ml and 13.8μg/ml, respectively by the XTT assay. BIT 1and BIT 2 (but not BIT 3) suppressed both NF-κB subunits p50 and p65 in cytoplasmic and nuclear extracts in a concentration-dependent manner. Furthermore, BIT 1 showed a moderate synergistic effect with the standard chemotherapy drugs etoposide and doxorubicin, whereas BIT 2 and 3 showed a moderate additive effect to antagonistic effect. Cisplatin exhibited an antagonist effect on all the compounds tested under various concentrations, except in the case of 1.56μg/ml of BIT 3 with 0.156μg/ml of cisplatin. The compounds also inhibited the migration of adherent human lung adenocarcinoma cells (A549) in vitro. We conclude that especially BIT 1 and BIT 2 have in vitro anti-inflammatory and anti-cancer activities, which can be further investigated for future potential therapeutic use. Methods: Inspired by the electrophilic sulfur in Nuphar alkaloids, monomeric and dimeric benzisothiazolones were synthesized from dithiodibenzoic acid and their NF-κB inhibitory role was explored. NF-κB inhibition and cytotoxicity of the synthesized derivatives were studied using luciferase reporter gene assay and XTTassay. Immunocytochemistry studies were performed using L428 cells. Cell migration assay was conducted using the A549 cell line. L428 cells were used to conduct combination studies and the results were plotted using CompuSyn software. Results: Benzisothiazolone derivatives exhibited cytotoxicity in Hodgkin’s Lymphoma cells through NF-κB inhibition. Potent compounds showed suppression of both NF-κB subunits p50 and p65 in a concentrationdependent manner, both in cytoplasmic and nuclear extracts. Combination studies suggest that benzisothiazolone derivatives possess a synergistic effect with etoposide and doxorubicin. Furthermore, the compounds also inhibited the migration of A549 cells. Conclusion: Benzisothiazolones bearing one or two electrophilic sulfur atoms as part of the heterocyclic framework exhibited cytotoxicity in Hodgkin’s Lymphoma cells through NF-κB inhibition. In addition, these derivatives also exhibited a synergistic effect with etoposide and doxorubicin along with the ability to inhibit the migration of A549 cells. Our study suggests that BIT-based new chemical entities could lead to potential anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document