scholarly journals Feasibility of Large-Scale Biofuel Production

BioScience ◽  
1997 ◽  
Vol 47 (9) ◽  
pp. 587-600 ◽  
Author(s):  
Mario Giampietro ◽  
Sergio Ulgiati ◽  
David Pimentel
2014 ◽  
pp. 97-104 ◽  
Author(s):  
Electo Eduardo Silv Lora ◽  
Mateus Henrique Rocha ◽  
José Carlos Escobar Palacio ◽  
Osvaldo José Venturini ◽  
Maria Luiza Grillo Renó ◽  
...  

The aim of this paper is to discuss the major technological changes related to the implementation of large-scale cogeneration and biofuel production in the sugar and alcohol industry. The reduction of the process steam consumption, implementation of new alternatives in driving mills, the widespread practice of high steam parameters use in cogeneration facilities, the insertion of new technologies for biofuels production (hydrolysis and gasification), the energy conversion of sugarcane trash and vinasse, animal feed production, process integration and implementation of the biorefinery concept are considered. Another new paradigm consists in the wide spreading of sustainability studies of products and processes using the Life Cycle Assessment (LCA) and the implementation of sustainability indexes. Every approach to this issue has as an objective to increase the economic efficiency and the possibilities of the sugarcane as a main source of two basic raw materials: fibres and sugar. The paper briefly presents the concepts, indicators, state-of-the-art and perspectives of each of the referred issues.


2021 ◽  
Vol 13 (5) ◽  
pp. 2885
Author(s):  
Jinyu Li ◽  
Baozhen Li ◽  
Jinshui Yang

The bio-flocculation ability of UTEX 2341 was studied for the purpose of improving microalgae harvesting efficiency to cut the high cost of biofuel production. The algae cells of UTEX 2341 cultured under heterotrophic and municipal wastewater conditions were found to have better self-flocculation ability, with flocculation rates of 92% and 85% at 2 h, respectively. Moreover, the flocculation rates of 16 freeze-dried microalgae powder samples cultured under different stress conditions were 0~72% with an algae powder dosage of 35 mg L−1. The flocculation efficiency of DIM, DCd1, DT28, and L6S was stable under different pH of 3~9 and temperatures of 15~50 °C. For samples of IM, LCd0.6, LMn2, and LZn2, the flocculation efficiency decreased or increased respectively with increased pH or temperatures. Though the flocculation properties of the eight samples showed wide differences, their flocculant compositions were almost the same with unknown components occupying large proportions. More studies needed to be further carried out to reveal the flocculation mechanisms and analyze the flocculation abilities in practical application, which would be conducive to future large-scale application of the bio-flocculation method and also cost reduction.


Author(s):  
Yan Cui ◽  
Wenqiao Wayne Yuan ◽  
Zhijian Pei

Continuous use of petroleum derived fuels is widely recognized as unsustainable due to depleting supplies and the accumulation of greenhouse gases in the environment. Renewable, carbon neutral transport fuels are needed for environmental and economic sustainabilities. Algae have been demonstrated to be one of the most promising sources for biofuel production. However, large-scale algae production and harvesting for energy manufacturing are too costly using existing methods. The approach of growing algae on solid carriers is innovative and can potentially lead to cost-effective manufacturing of algae biofuels. As cells approach to the solid surface, many factors come in to influence microbial attachment such as the surface wettability, free energy, polarity, roughness and topography. Surface wettability plays an important role in the initial cell attachment. For further contact, surface free energy and polarity are more directly related to cell-substratum attachment strength. Surface roughness and texture are species-specific parameters and have been applied widely in attachment studies.


2015 ◽  
Vol 183 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoming Lu ◽  
Mitch R. Withers ◽  
Navid Seifkar ◽  
Randall P. Field ◽  
Steven R.H. Barrett ◽  
...  

2006 ◽  
Vol 2006 ◽  
pp. 1-12
Author(s):  
A. Korobeinikov ◽  
P. Read ◽  
A. Parshotam ◽  
J. Lermit

It has been suggested that the large scale use of biofuel, that is, fuel derived from biological materials, especially in combination with reforestation of large areas, can lead to a low-cost reduction of atmospheric carbon dioxide levels. In this paper, a model of three markets: fuel, wood products, and land are considered with the aim of evaluating the impact of large scale biofuel production and forestry on these markets, and to estimate the cost of a policy aimed at the reduction of carbon dioxide in the atmosphere. It is shown that the costs are lower than had been previously expected.


2011 ◽  
Vol 63 (4) ◽  
pp. 660-665 ◽  
Author(s):  
R. J. Craggs ◽  
S. Heubeck ◽  
T. J. Lundquist ◽  
J. R. Benemann

This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO2 has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest.


Author(s):  
Thomas Jenkins ◽  
Aurélie Bovi ◽  
Robert Edwards

Depletion of oil reserves and the associated effects on climate change have prompted a re-examination of the use of plant biomass as a sustainable source of organic carbon for the large-scale production of chemicals and materials. While initial emphasis has been placed on biofuel production from edible plant sugars, the drive to reduce the competition between crop usage for food and non-food applications has prompted massive research efforts to access the less digestible saccharides in cell walls (lignocellulosics). This in turn has prompted an examination of the use of other plant-derived metabolites for the production of chemicals spanning the high-value speciality sectors through to platform intermediates required for bulk production. The associated science of biorefining, whereby all plant biomass can be used efficiently to derive such chemicals, is now rapidly developing around the world. However, it is clear that the heterogeneity and distribution of organic carbon between valuable products and waste streams are suboptimal. As an alternative, we now propose the use of synthetic biology approaches to ‘re-construct’ plant feedstocks for optimal processing of biomass for non-food applications. Promising themes identified include re-engineering polysaccharides, deriving artificial organelles, and the reprogramming of plant signalling and secondary metabolism.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Hossein Alishah Aratboni ◽  
Nahid Rafiei ◽  
Raul Garcia-Granados ◽  
Abbas Alemzadeh ◽  
José Rubén Morones-Ramírez

Abstract The use of fossil fuels has been strongly related to critical problems currently affecting society, such as: global warming, global greenhouse effects and pollution. These problems have affected the homeostasis of living organisms worldwide at an alarming rate. Due to this, it is imperative to look for alternatives to the use of fossil fuels and one of the relevant substitutes are biofuels. There are different types of biofuels (categories and generations) that have been previously explored, but recently, the use of microalgae has been strongly considered for the production of biofuels since they present a series of advantages over other biofuel production sources: (a) they don’t need arable land to grow and therefore do not compete with food crops (like biofuels produced from corn, sugar cane and other plants) and; (b) they exhibit rapid biomass production containing high oil contents, at least 15 to 20 times higher than land based oleaginous crops. Hence, these unicellular photosynthetic microorganisms have received great attention from researches to use them in the large-scale production of biofuels. However, one disadvantage of using microalgae is the high economic cost due to the low-yields of lipid content in the microalgae biomass. Thus, development of different methods to enhance microalgae biomass, as well as lipid content in the microalgae cells, would lead to the development of a sustainable low-cost process to produce biofuels. Within the last 10 years, many studies have reported different methods and strategies to induce lipid production to obtain higher lipid accumulation in the biomass of microalgae cells; however, there is not a comprehensive review in the literature that highlights, compares and discusses these strategies. Here, we review these strategies which include modulating light intensity in cultures, controlling and varying CO2 levels and temperature, inducing nutrient starvation in the culture, the implementation of stress by incorporating heavy metal or inducing a high salinity condition, and the use of metabolic and genetic engineering techniques coupled with nanotechnology.


Sign in / Sign up

Export Citation Format

Share Document