Role of Ponticulin in Pseudopod Dynamics, Cell-Cell Adhesion, and Mechanical Stability of an Amoeboid Membrane Skeleton

1998 ◽  
Vol 194 (3) ◽  
pp. 345-347
Author(s):  
E. J. Luna ◽  
A. L. Hitt ◽  
D. Shutt ◽  
D. Wessels ◽  
D. Soll ◽  
...  
2021 ◽  
Author(s):  
Xun Wang ◽  
Christian Cupo ◽  
Karen Kasza

2008 ◽  
Vol 13 (8) ◽  
pp. 797-805 ◽  
Author(s):  
Kaori Kuramitsu ◽  
Wataru Ikeda ◽  
Naoya Inoue ◽  
Yoshiyuki Tamaru ◽  
Yoshimi Takai

2021 ◽  
Author(s):  
Hygor P. M. Melo ◽  
F. Raquel Maia ◽  
André S. Nunes ◽  
Rui L. Reis ◽  
Joaquim M. Oliveira ◽  
...  

ABSTRACTThe collective dynamics of cells on surfaces and interfaces poses technological and theoretical challenges in the study of morphogenesis, tissue engineering, and cancer. Different mechanisms are at play, including, cell-cell adhesion, cell motility, and proliferation. However, the relative importance of each one is elusive. Here, experiments with a culture of glioblastoma multiforme cells on a substrate are combined with in silico modeling to infer the rate of each mechanism. By parametrizing these rates, the time-dependence of the spatial correlation observed experimentally is reproduced. The obtained results suggest a reduction in cell-cell adhesion with the density of cells. The reason for such reduction and possible implications for the collective dynamics of cancer cells are discussed.


2002 ◽  
Vol 293 (1) ◽  
pp. 45-49 ◽  
Author(s):  
Yumiko Momose ◽  
Tomoyuki Honda ◽  
Maiko Inagaki ◽  
Kazuya Shimizu ◽  
Kenji Irie ◽  
...  
Keyword(s):  

Development ◽  
1989 ◽  
Vol 105 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Y. Hirai ◽  
A. Nose ◽  
S. Kobayashi ◽  
M. Takeichi

The role of Ca2+-dependent cell-cell adhesion molecules, E- and P-cadherins, in the histogenesis of mouse embryonic lung was studied. All epithelial cells of the lung express both E- and P-cadherin at the early developmental stage. P-cadherin, however, gradually disappears during development, initially from the main bronchi and eventually from all epithelial cells. When a monoclonal antibody to E-cadherin (ECCD-1) was added to monolayer cultures of lung epithelial cells, it induced a partial disruption of their cell-cell adhesion, while a monoclonal antibody to P-cadherin (PCD-1) showed a subtle effect. A mixture of the two antibodies, however, displayed a synergistic effect. We then tested the effect of the antibodies on the morphogenesis of lung primordia using an organ culture system. In control media, the explants formed typical bronchial trees. In the presence of ECCD-1, the explants grew up at the same rate as in the control, but their morphogenesis was affected. The control explants formed round epithelial lobules with an open luminal space at the tips of the bronchial trees, whereas the lobules of explants incubated with ECCD-1 tended to be flat and devoid of the luminal space. PCD-1 showed a similar but very small effect. A mixture of the two antibodies, however, showed a stronger effect: the branching of epithelia was partially suppressed and the arrangement of epithelial cells was distorted in many places. These results suggest that E- and P-cadherin have a synergistic role in the organization of epithelial cells in lung morphogenesis.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Jie Liu ◽  
Yanmei Qi ◽  
Shu-Chan Hsu ◽  
Siavash Saadat ◽  
Saum Rahimi ◽  
...  

Cellular repressor of E1A-stimulated genes 1 (CREG1) is a 24 kD glycoprotein essential for early embryonic development. Our immunofluorescence studies revealed that CREG1 is highly expressed at myocyte junctions in both embryonic and adult hearts. To explore it role in cardiomyogenesis, we employed gain- and loss-of-function analyses demonstrating that CREG1 is required for the differentiation of mouse embryonic stem (ES) cell into cohesive myocardium-like structures. Chimeric cultures of wild-type and CREG1 knockout ES cells expressing cardiac-specific reporters showed that the cardiomyogenic effect of CREG1 is cell autonomous. Furthermore, we identified a novel interaction between CREG1 and Sec8 of the exocyst complex, which tethers vesicles to the plasma membrane. Mutations of the amino acid residues D141 and P142 to alanine in CREG1 abolished its binding to Sec8. To address the role of the CREG1-Sec8 interaction in cardiomyogenesis, we rescued CREG1 knockout ES cells with wild-type and Sec8-binding mutant CREG1 and showed that CREG1 binding to Sec8 promotes cardiomyocyte differentiation and cohesion. Mechanistically, CREG1, Sec8 and N-cadherin all localize at cell-cell adhesion sites. CREG1 overexpression enhances the assembly of adherens and gap junctions. By contrast, its knockout inhibits the Sec8-N-cadherin interaction and induces their degradation. Finally, shRNA-mediated knockdown of Sec8 leads to cardiomyogenic defects similar to CREG1 knockout. These results suggest that the CREG1 binding to Sec8 enhances the assembly of intercellular junctions and promotes cardiomyogenesis.


2020 ◽  
Vol 21 (16) ◽  
pp. 5781
Author(s):  
Ai-Young Lee

MicroRNAs (miRNAs), which mostly cause target gene silencing via transcriptional repression and degradation of target mRNAs, regulate a plethora of cellular activities, such as cell growth, differentiation, development, and apoptosis. In the case of skin keratinocytes, the role of miRNA in epidermal barrier integrity has been identified. Based on the impact of key genetic and environmental factors on the integrity and maintenance of skin barrier, the association of miRNAs within epidermal cell differentiation and proliferation, cell–cell adhesion, and skin lipids is reviewed. The critical role of miRNAs in the epidermal barrier extends the use of miRNAs for control of relevant skin diseases such as atopic dermatitis, ichthyoses, and psoriasis via miRNA-based technologies. Most of the relevant miRNAs have been associated with keratinocyte differentiation and proliferation. Few studies have investigated the association of miRNAs with structural proteins of corneocytes and cornified envelopes, cell–cell adhesion, and skin lipids. Further studies investigating the association between regulatory and structural components of epidermal barrier and miRNAs are needed to elucidate the role of miRNAs in epidermal barrier integrity and their clinical implications.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2763-2763
Author(s):  
Fernanda Marconi Roversi ◽  
Matheus Rodrigues Lopes ◽  
João Agostinho Machado-Neto ◽  
Ana Leda Longhini ◽  
Adriana da Silva Santos Duarte ◽  
...  

Abstract Myelodysplastic syndromes (MDS) are clonal disorders of hematopoietic stem cells (HSC) characterized by ineffective hematopoiesis. In addition to HSC defects, an important role is also played by the hematopoietic microenvironment niche that has as key component the mesenchymal stromal cells (MSC). The MSC of MDS patients have morphological and functional abnormalities. Recently, our group identified new possible target genes involved in MDS pathophysiology through microarray analysis of MSC from MDS patients. An interesting underexpressed gene found was SPINT2, a gene that encodes a transmembrane protein which inhibits the hepatocyte growth factor activator (HGFA), the enzyme responsible for the conversion of hepatocyte growth factor (HGF) into its active form. SPINT2 is downregulated in some types of solid cancer and correlated with their prognostic and progression; however, the functional role of SPINT2 in MDS remains unknown. We herein investigated the role of SPINT2 in MSC, studying HGF and SDF1 secretion and cell adhesion with normal CD34+, P39 and U937 cells by silencing SPINT2 gene in HS5 and HS-27a stromal cell lines. We also investigated, using qPCR, SPINT2 and HGF mRNA expression in MSC and total bone marrow (BM) cells from 56 untreated MDS patients (WHO 35 low-risk, 21 high-risk) and 28 healthy donors. To inhibit SPINT2, specific shRNA expressing lentiviral vectors targeting SPINT2 gene or no specific sequence were used. The HGF and SDF1 secretion in cell supernatant from the cells silenced or not for SPINT2 was measured by BioPlex after 6, 12, 24 and 48h. The cell-cell adhesion of CD34+, P39 or U937 cells onto transduced stromal cells and the adhesion molecule profile were analyzed by flow cytometry. We observed a significant decrease in SPINT2 mRNA expression of MDS MSC (P=0.006) and MDS BM cells (P=0.03) compared to normal cells. Further, HGF mRNA expression of MDS MSC was significantly increased (P=0.01) compared to normal cells. Spearman analysis showed a negative significant correlation between SPINT2 and HGF expressions (P=0.01;r2=0.60). In both stromal cell lines, SPINT2 inhibition resulted in a significant increase in HGF secretion after 24 and 48h and a significant increased secretion of SDF1 after 48h. Moreover, SPINT2 silencing induced a significant increased adherence of CD34+, P39 and U937 cells onto stromal cells probably due to the alteration in integrin expression, since an increase in CD49b and CD49d and decrease in CD49e expressions were also observed in cells silenced for SPINT2. Considering that SPINT2 limits signaling via HGF pathway by inhibiting HGF activation through HGFA, the SPINT2 underexpression in MDS would allow the conversion of the inactive HGF monomer to an active heterodimer. Interestingly, a significant decrease of SPINT2 and increase of HGF expressions were observed in MSC of MDS patients, compared to normal cells. Moreover, recent studies have demonstrated that HGF serum levels are significantly increased in MDS patients and dependent on MDS severity. In addition, SPINT2 inhibition in stromal cells significantly increased HGF secretion by these cells. The increased HGF secretion can result in an autocrine regulation which induces the production and secretion of SDF1 by stromal cells themselves. Cytokines secretions provided by MSC are required for adhesion, survival and proliferation of HSC cells. In this way, in MDS MSC, SPINT2 underexpression and, consequently, increased HGF and SDF1 secretion, may lead to an increased adhesion between MSC and normal or malignant HSC cells. Corroborating our hypotheses, we found overexpression of integrins CD49b and CD49d, which mediate cell-MSC interaction, and a decrease in CD49e expression, an integrin that promotes interaction with extracellular matrix. The interaction onto MSC contributes to the maintenance of the stem and malignant cell properties, such as self-renewal, survival and proliferation. Cytokine secretion and cell adhesion onto MSC is important for MDS physiology. Hence, we demonstrate for the first time that, in MDS, SPINT2 plays a role in the HGF and SDF1 secretion by MSC, resulting in an alteration in cell-cell adhesion and molecule adhesion profile. In view of these data, the SPINT2 expression alteration in MDS MSC may constitute a particular mechanism of MDS pathophysiology and maintenance of self-renewal, homing and proliferation of HSC and malignant clones in MDS.Support: FAPESP, CNPq Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 7 (5) ◽  
pp. 634-644 ◽  
Author(s):  
Xiaoying Zhang ◽  
Ulka Shrikhande ◽  
Bethany M. Alicie ◽  
Qing Zhou ◽  
Robert L. Geahlen

Sign in / Sign up

Export Citation Format

Share Document