Long-Term Pathologic and Behavioral Changes in Mice after Focal Deuteron Irradiation of the Brain

1963 ◽  
Vol 20 (1) ◽  
pp. 30 ◽  
Author(s):  
J. M. Ordy ◽  
T. Samorajski ◽  
W. Zeman ◽  
R. L. Collins ◽  
H. J. Curtis
2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Romina M. Uranga ◽  
Jeffrey N. Keller

Cholesterol is an essential molecule for brain homeostasis; yet, hypercholesterolemia and its numerous complications are believed to play a role in promoting multiple aspects of brain pathogenesis. An ever increasing number of individuals in modern Western Society are regularly consuming diets high in fat which promote the development of hypercholesterolemia. Additionally, modern societies are becoming increasingly aged, causing a collision between increased hypercholesterolemia and increased aging, which will likely lead to the development of increased pathological conditions due to hypercholesterolemia, thereby promoting deleterious neurochemical and behavioral changes in the brain. Lastly, while beneficial in controlling cholesterol levels, the long-term use of statins itself may potentially promote adverse effects on brain homeostasis, although specifics on this remain largely unknown. This review will focus on linking the current understanding of diet-induced hypercholesterolemia (as well as statin use) to the development of oxidative stress, neurochemical alterations, and cognitive disturbances in the aging brain.


1998 ◽  
Vol 274 (3) ◽  
pp. E426-E431 ◽  
Author(s):  
Paul A. Hawkins ◽  
Mary R. Dejoseph ◽  
Richard A. Hawkins

Previous studies showed that portacaval shunting causes metabolic and behavioral changes in rats. Most metabolic changes reversed within 1–2 wk after restoration of normal circulation. However, the rate of cerebral glucose metabolism (CMRGlc) remained depressed in some areas. The question arose whether complete recovery was possible. Therefore, a long-term behavioral study was undertaken to determine the time course of recovery. Diurnal activity was monitored for 48 h each week over a period of 14 wk: 2 wk before shunting, 6 wk after shunting, and 6 wk after restoration of normal hepatic circulation. Nighttime activity was depressed within 1 wk of shunting and did not change. Normal circulation to the liver was reestablished after 6 wk. The diurnal cycle was normal 3 wk later. Thus, although recovery of the diurnal rhythm is possible, the relatively long period necessary suggests the correction of a significant structural or chemical abnormality. A study of CMRGlcwas made using the behavioral study as an index of the time necessary for recovery. CMRGlcreturned to normal throughout the brain 6 wk after cessation of shunting except in the hippocampus and amygdala (7–8% decrease).


2021 ◽  
Vol 15 ◽  
Author(s):  
Sang Soo Lee ◽  
Michael E. Adams

Endocrine state is an important determinant of learning and memory in animals. InDrosophila, rejection of male courtship overtures by mated females leads to an aversive response manifested as courtship memory. Here we report that ecdysis triggering hormone (ETH) is an obligatory enabler of long-term courtship memory (LTM). ETH deficiency suppresses LTM, whereas augmented ETH release reduces the minimum training period required for LTM induction. ETH receptor knockdown either in the mushroom body (MB) γ lobe or in octopaminergic dorsal-anterior-lateral (DAL) neurons impairs memory performance, indicating its direct action in these brain areas. Consistent with these findings, brain exposure to ETH mobilizes calcium in MB γ lobe neuropils and DAL neurons. ETH receptor (ETHR) knockdown in the corpus allatum (CA) to create juvenile hormone (JH) deficiency also suppresses LTM, as does knockdown of the JH receptor Met in the MB γ lobe, indicating a convergence of ETH and JH signaling in this region of the brain. Our findings identify endocrine-enabled neural circuit components in the brain that are critical for persistent behavioral changes resulting from aversive social experience.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258199
Author(s):  
Leda Castaño Barrios ◽  
Ana Paula Da Silva Pinheiro ◽  
Daniel Gibaldi ◽  
Andrea Alice Silva ◽  
Patrícia Machado Rodrigues e Silva ◽  
...  

The Apicomplexa protozoan Toxoplasma gondii is a mandatory intracellular parasite and the causative agent of toxoplasmosis. This illness is of medical importance due to its high prevalence worldwide and may cause neurological alterations in immunocompromised persons. In chronically infected immunocompetent individuals, this parasite forms tissue cysts mainly in the brain. In addition, T. gondii infection has been related to mental illnesses such as schizophrenia, bipolar disorder, depression, obsessive-compulsive disorder, as well as mood, personality, and other behavioral changes. In the present study, we evaluated the kinetics of behavioral alterations in a model of chronic infection, assessing anxiety, depression and exploratory behavior, and their relationship with neuroinflammation and parasite cysts in brain tissue areas, blood-brain-barrier (BBB) integrity, and cytokine status in the brain and serum. Adult female C57BL/6 mice were infected by gavage with 5 cysts of the ME-49 type II T. gondii strain, and analyzed as independent groups at 30, 60 and 90 days postinfection (dpi). Anxiety, depressive-like behavior, and hyperactivity were detected in the early (30 dpi) and long-term (60 and 90 dpi) chronic T. gondii infection, in a direct association with the presence of parasite cysts and neuroinflammation, independently of the brain tissue areas, and linked to BBB disruption. These behavioral alterations paralleled the upregulation of expression of tumor necrosis factor (TNF) and CC-chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β and CCL5/RANTES) in the brain tissue. In addition, increased levels of interferon-gamma (IFNγ), TNF and CCL2/MCP-1 were detected in the peripheral blood, at 30 and 60 dpi. Our data suggest that the persistence of parasite cysts induces sustained neuroinflammation, and BBB disruption, thus allowing leakage of cytokines of circulating plasma into the brain tissue. Therefore, all these factors may contribute to behavioral changes (anxiety, depressive-like behavior, and hyperactivity) in chronic T. gondii infection.


2010 ◽  
Vol 24 (4) ◽  
pp. 249-252 ◽  
Author(s):  
Márk Molnár ◽  
Roland Boha ◽  
Balázs Czigler ◽  
Zsófia Anna Gaál

This review surveys relevant and recent data of the pertinent literature regarding the acute effect of alcohol on various kinds of memory processes with special emphasis on working memory. The characteristics of different types of long-term memory (LTM) and short-term memory (STM) processes are summarized with an attempt to relate these to various structures in the brain. LTM is typically impaired by chronic alcohol intake but according to some data a single dose of ethanol may have long lasting effects if administered at a critically important age. The most commonly seen deleterious acute effect of alcohol to STM appears following large doses of ethanol in conditions of “binge drinking” causing the “blackout” phenomenon. However, with the application of various techniques and well-structured behavioral paradigms it is possible to detect, albeit occasionally, subtle changes of cognitive processes even as a result of a low dose of alcohol. These data may be important for the consideration of legal consequences of low-dose ethanol intake in conditions such as driving, etc.


Author(s):  
Peter R. Breggin

BACKGROUND: The vaccine/autism controversy has caused vast scientific and public confusion, and it has set back research and education into genuine vaccine-induced neurological disorders. The great strawman of autism has been so emphasized by the vaccine industry that it, and it alone, often appears in authoritative discussions of adverse effects of the MMR and other vaccines. By dismissing the chimerical vaccine/autism controversy, vaccine defenders often dismiss all genuinely neurological aftereffects of the MMR (measles, mumps, and rubella) and other vaccines, including well-documented events, such as relatively rare cases of encephalopathy and encephalitis. OBJECTIVE: This report explains that autism is not a physical or neurological disorder. It is not caused by injury or disease of the brain. It is a developmental disorder that has no physical origins and no physical symptoms. It is extremely unlikely that vaccines are causing autism; but it is extremely likely that they are causing more neurological damage than currently appreciated, some of it resulting in psychosocial disabilities that can be confused with autism and other psychosocial disorders. This confusion between a developmental, psychosocial disorder and a physical neurological disease has played into the hands of interest groups who want to deny that vaccines have any neurological and associated neuropsychiatric effects. METHODS: A review of the scientific literature, textbooks, and related media commentary is integrated with basic clinical knowledge. RESULTS: This report shows how scientific sources have used the vaccine/autism controversy to avoid dealing with genuine neurological risks associated with vaccines and summarizes evidence that vaccines, including the MMR, can cause serious neurological disorders. Manufacturers have been allowed by the US Food and Drug Administration (FDA) to gain vaccine approval without placebo-controlled clinical trials. CONCLUSIONS: The misleading vaccine autism controversy must be set aside in favor of examining actual neurological harms associated with vaccines, including building on existing research that has been ignored. Manufacturers of vaccines must be required to conduct placebo-controlled clinical studies for existing vaccines and for government approval of new vaccines. Many probable or confirmed neurological adverse events occur within a few days or weeks after immunization and could be detected if the trials were sufficiently large. Contrary to current opinion, large, long-term placebo-controlled trials of existing and new vaccines would be relatively easy and safe to conduct.


2004 ◽  
pp. 406-412
Author(s):  
Paul Okunieff ◽  
Michael C. Schell ◽  
Russell Ruo ◽  
E. Ronald Hale ◽  
Walter G. O'Dell ◽  
...  

✓ The role of radiosurgery in the treatment of patients with advanced-stage metastatic disease is currently under debate. Previous randomized studies have not consistently supported the use of radiosurgery to treat patients with numbers of brain metastases. In negative-results studies, however, intracranial tumor control was high but extracranial disease progressed; thus, patient survival was not greatly affected, although neurocognitive function was generally maintained until death. Because the future promises improved systemic (extracranial) therapy, the successful control of brain disease is that much more crucial. Thus, for selected patients with multiple metastases to the brain who remain in good neurological condition, aggressive lesion-targeting radiosurgery should be very useful. Although a major limitation to success of this therapy is the lack of control of extracranial disease in most patients, it is clear that well-designed, aggressive treatment substantially decreases the progression of brain metastases and also improves neurocognitive survival. The authors present the management and a methodology for rational treatment of a patient with breast cancer who has harbored 24 brain metastases during a 3-year period.


Author(s):  
Amteshwar Singh Jaggi

Aim: The aim of the present study is to explore the neuroprotective effects of remote ischemic preconditioning in long term cognitive impairment after global cerebral ischemia induced-vascular dementia in mice. Material and methods: The mice were subjected to global cerebral ischemia by occluding the bilateral common carotid arteries for 12 minutes followed by the 24 hours of the reperfusion. The remote ischemic preconditioning stimulus was delivered in the form of 4 cycles of ischemia/reperfusion for 5 minutes each. The cerebral ischemic injury induced-long term cognitive impairment-related learning and memory alterations was assessed using morris water maze, the motor performances of the animals were evaluated using rota-rod test and neurological severity score. The cerebral infract size of the brain were quantified using triphenyltetrazolium chloride staining. Results: Global cerebral ischemia causes long term memory impairment, decreases motor performances and increases the brain infract size in animals. The delivery of remote ischemic preconditioning stimulus significantly abolished the long-term cognitive impairment and ameliorates the motor performances as well as cerebral infract size in brain. Conclusion: The remote ischemic preconditioning mediates neuro protection against global cerebral ischemic injury induced long-term cognitive impairment.


2017 ◽  
Vol 14 (4) ◽  
pp. 441-452 ◽  
Author(s):  
Sofia Wenzler ◽  
Christian Knochel ◽  
Ceylan Balaban ◽  
Dominik Kraft ◽  
Juliane Kopf ◽  
...  

Depression is a common neuropsychiatric manifestation among Alzheimer’s disease (AD) patients. It may compromise everyday activities and lead to a faster cognitive decline as well as worse quality of life. The identification of promising biomarkers may therefore help to timely initiate and improve the treatment of preclinical and clinical states of AD, and to improve the long-term functional outcome. In this narrative review, we report studies that investigated biomarkers for AD-related depression. Genetic findings state AD-related depression as a rather complex, multifactorial trait with relevant environmental and inherited contributors. However, one specific set of genes, the brain derived neurotrophic factor (BDNF), specifically the Val66Met polymorphism, may play a crucial role in AD-related depression. Regarding neuroimaging markers, the most promising findings reveal structural impairments in the cortico-subcortical networks that are related to affect regulation and reward / aversion control. Functional imaging studies reveal abnormalities in predominantly frontal and temporal regions. Furthermore, CSF based biomarkers are seen as potentially promising for the diagnostic process showing abnormalities in metabolic pathways that contribute to AD-related depression. However, there is a need for standardization of methodological issues and for replication of current evidence with larger cohorts and prospective studies.


Sign in / Sign up

Export Citation Format

Share Document