scholarly journals Combination of heterotrophic nitrifying bacterium and duckweed (Lemna gibba L.) enhances ammonium nitrogen removal efficiency in aquaculture water via mutual growth promotion

2019 ◽  
Vol 65 (3) ◽  
pp. 151-160 ◽  
Author(s):  
Min Shen ◽  
Zhifeng Yin ◽  
Dan Xia ◽  
Qingxin Zhao ◽  
Yijun Kang
2020 ◽  
Vol 85 (3) ◽  
pp. 395-405
Author(s):  
Hong Yan ◽  
Jian Wu ◽  
Pei Xu

A new bacterium capable of heterotrophic nitrogen removal was isolated and identified as Oligella sp. XS68. The strain exhibited efficient heterotrophic nitrogen removal capabilities, with a low accumulation of nitrification products. Single-factor experiments indicated that efficient nitrogen removal and growth of the strain XS68 occurred with sodium succinate as the carbon source, C/N ratio 15, pH 6.0?9.0, temperature 30?37 ?C, and shaking speed 160?200 rpm. The removal efficiency of ammonium nitrogen could achieve 98 % within 96 h when the initial nitrogen concentration was 421.3 mg L-1. These findings demonstrate that XS68 is a promising candidate for nitrogen removal in wastewater treatments.


2014 ◽  
Vol 955-959 ◽  
pp. 2318-2321
Author(s):  
Dong Yuan

The objective of this work was to evaluate the performances of A lab-scale innovative sequencing batch biofilm reactor (SBBR) to treat domestic wastewater,in which a acryl cylinder (height 200 mm, diameter 70 mm) was equipped and many fiber threads were attached to the surface of the cylinder as the bacteria carrier. No time and volume for settling was required in this system. After one year’s operation, each parameter achieved the wastewater discharged criterion in 2 cycles (4 h). It was found that COD removal efficiency was up to 90% in 3 h, and ammonium nitrogen concentration approached the least value; total nitrogen removal efficiency reached 55%-71%. In this SBBR system simultaneous nitrification and denitrification was completed at the end of 2 cycles.


2021 ◽  
Vol 13 (8) ◽  
pp. 4591
Author(s):  
Shuanglei Huang ◽  
Daishe Wu

The tremendous input of ammonium and rare earth element (REE) ions released by the enormous consumption of (NH4)2SO4 in in situ leaching for ion-adsorption RE mining caused serious ground and surface water contamination. Anaerobic ammonium oxidation (anammox) was a sustainable in situ technology that can reduce this nitrogen pollution. In this research, in situ, semi in situ, and ex situ method of inoculation that included low-concentration (0.02 mg·L−1) and high-concentration (0.10 mg·L−1) lanthanum (La)(III) were adopted to explore effective start-up strategies for starting up anammox reactors seeded with activated sludge and anammox sludge. The reactors were refrigerated for 30 days at 4 °C to investigate the effects of La(III) during a period of low-temperature. The results showed that the in situ and semi in situ enrichment strategies with the addition of La(III) at a low-concentration La(III) addition (0.02 mg·L−1) reduced the length of time required to reactivate the sludge until it reached a state of stable anammox activity and high nitrogen removal efficiency by 60–71 days. The addition of La(III) promoted the formation of sludge floc with a compact structure that enabled it to resist the adverse effects of low temperature and so to maintain a high abundance of AnAOB and microbacterial community diversity of sludge during refrigeration period. The addition of La(III) at a high concentration caused the cellular percentage of AnAOB to decrease from 54.60 ± 6.19% to 17.35 ± 6.69% during the enrichment and reduced nitrogen removal efficiency to an unrecoverable level to post-refrigeration.


2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


2014 ◽  
Vol 703 ◽  
pp. 171-174
Author(s):  
Bing Wang ◽  
Yi Xiao ◽  
Shou Hui Tong ◽  
Lan Fang ◽  
Da Hai You ◽  
...  

Improved step-feed de-nitrification progress combined with biological fluidized bed was introduced in this study. The progress had good performance and capacity of de-nitrification and organic matter. The experiment result showed that the de-nitrification efficiency of the improved biological fluidized bed with step-feed process was higher than the fluidized bed A/O process under the same water quality and the operating conditions. When the influent proportion of each segment was equal, the system showed good nitrogen removal efficiency with the change of influent C/N ratio, HRT and sludge return ratio. The removal rate of TN reached up to 88.2%. It showed that the simultaneous nitrification and de-nitrification phenomenon happened in the aerobic zone. The nitrogen removal mechanism was also studied.


1994 ◽  
Vol 30 (12) ◽  
pp. 297-306 ◽  
Author(s):  
Joseph Akunna ◽  
Claude Bizeau ◽  
René Moletta ◽  
Nicolas Bernet ◽  
Alain Héduit

Two laboratory upflow aerobic and anaerobic filters fed with synthetic wastewaters were used to study firstly the effects of aeration rate on the nitrification of anaerobically pre-treated effluents and secondly the effects of recycle-to-influent ratios on methane production rate, denitrification and nitrification performances of a combined aerobic and anaerobic wastewater treatment process. Nitrification of anaerobically pre-treated effluent was accompanied by aerobic post-treatment for residual COD removal. A comparison of nitrification performances using autotrophic medium and anaerobically pre-treated effluents (containing 1203 mg COD 1−1) with the same ammonia nitrogen concentration of about 300 mg NH4-N 1−1 showed that 3% of added ammonia nitrogen was assimilated by autotrophic nitrifiers during nitrification of the autotrophic medium while up to 30% was assimilated by both nitrifiers and heterotrophs during organic carbon removal and nitrification of anaerobically pre-treated effluent. Furthermore, it was suspected that significant nitrogen loss through denitrification occured in the aerobic filter especially at low aeration rates. In the study of the combined aerobic-anaerobic system, maximum ammonia nitrogen removal of 70% through denitrification was obtained at recycle-to-influent ratios of 4 and 5. COD removal efficiency in the anaerobic filter decreased from 77 to 60% for recycle-to-influent ratios of zero to 5. Overall COD removal efficiency of the entire system was constant at about 99% due to heterotrophic COD removal in the aerobic filter.


Author(s):  
Kangmao He ◽  
Huapeng Qin ◽  
Fan Wang ◽  
Wei Ding ◽  
Yixiang Yin

Adding a submerged zone (SZ) is deemed to promote denitrification during dry periods and thus improve NO3--N removal efficiency of a bioretention system. However, few studies had investigated the variation of nitrogen concentration in the SZ during dry periods and evaluated the effect of the variation on nitrogen removal of the bioretention system. Based on the experiment in a mesocosm bioretetion system with SZ, this study investigated the variation of nitrogen concentration of the system under 17 consecutive cycles of wet and dry alternation with varied rainfall amount, influent nitrogen concentration and antecedent dry periods (ADP). The results indicated that (1) during the dry periods, NH4+-N concentrations in SZ showed an exponential decline trend, decreasing by 50% in 12.9 ± 7.3 hours; while NO3--N concentrations showed an inverse S-shape decline trend, decreasing by 50% in 18.8 ± 6.4 hours; (2) during the wet periods, NO3--N concentration in the effluent showed an S-shape upward trend; and at the early stage of the wet periods, the concentration was relatively low and significantly correlated with ADP, while the corresponding volume of the effluent was significantly correlated with the SZ depth; (3) in the whole experiment, the contribution of nitrogen decrease in SZ during dry periods to NH4+-N and NO3--N removal accounted for 12% and 92%, respectively; and the decrease of NO3--N in SZ during the dry period was correlated with the influent concentration in the wet period and the length of the dry period.


Sign in / Sign up

Export Citation Format

Share Document