Measurement of the Internal Adaptation of Resin Composites Using Micro-CT and Its Correlation With Polymerization Shrinkage

2014 ◽  
Vol 39 (2) ◽  
pp. e57-e70 ◽  
Author(s):  
HJ Kim ◽  
SH Park

SUMMARY In the present study, the internal adaptation of dentin-composite interfaces with various resin composite materials under conditions of thermomechanical loading was analyzed nondestructively using micro–computed tomography (micro-CT), and these results were compared with analyses of microgaps after sectioning. Additionally, the correlation of internal adaptation with polymerization shrinkage strain and stress was evaluated. Four nonflowable resins, Gradia Direct (GD), Filtek P90 (P9), Filtek Z350 (Z3), and Charisma (CH), and two flowable resins, SDR (SD) and Tetric N-Flow (TF) were used. First, the polymerization shrinkage strain and stress were measured. Then, Class I cavities were prepared in 48 premolars. They were divided randomly into six groups, and the cavities were filled with composites using XP bond. To evaluate the internal adaptation, tooth specimens were immersed in a 25% silver nitrate solution, and micro-CT analysis was performed before and after thermomechanical loading. The silver nitrate penetration (%SP) was measured. After buccolingual sectioning and rhodamine penetration of the specimen, the rhodamine penetration (%RP) was measured using a stereo-microscope. One-way analysis of variance was then used to compare the polymerization shrinkage strain, stress, %SP, and %RP among the groups at a 95% confidence level. A paired t-test was used to compare the %SP before and after thermomechanical loading. Pearson correlation analysis was used to compare the correlation between polymerization shrinkage strain/stress and %SP or %RP to a 95% confidence level. Evaluation of the polymerization shrinkage strain demonstrated that P9 < Z3 ≤ GD < CH ≤ SD < TF (p<0.05); similarly, evaluation of the polymerization shrinkage stress showed that P9 ≤ GD ≤ Z3 ≤ CH ≤ SD < TF (p<0.05). The %SP showed that P9 ≤ GD ≤ Z3 < CH ≤ SD < TF (p<0.05) before loading and that P9 ≤ GD ≤ Z3 ≤ CH ≤ SD < TF (p<0.05) after loading. There was a significant difference between the before-loading and after-loading measurements in all groups (p<0.05). Additionally, there was a positive correlation between the %SP and the %RP (r=0.810, p<0.001). Conclusively, the polymerization shrinkage stress and strain were found to be closely related to the internal adaptation of the resin composite restorations. The newly proposed model for the evaluation of internal adaptation using micro-CT and silver nitrate may provide a new measurement for evaluating the internal adaptation of restorations in a nondestructive way.

2017 ◽  
Vol 42 (2) ◽  
pp. 203-214 ◽  
Author(s):  
SH Han ◽  
SH Park

SUMMARY Purpose: This study compared the internal adaptation of bulk-fill composite restorations in class II cavities and explored the relationship between internal adaptation and polymerization shrinkage or stress. Methods and Materials: Standardized mesio-occluso-distal cavities were prepared in 40 extracted human third molars and randomly divided into five groups (n=8). After having been applied by total-etch XP bond (Dentsply Caulk, Milford, DE, USA) and light curing, the teeth were restored with the following resin composites: group 1, Filtek Z350 (3M ESPE, St. Paul, MN, USA); group 2, SDR (Dentsply Caulk, Milford, DE, USA) + Z350; group 3, Venus Bulk Fill (Heraeus Kulzer, Dormagen, Germany) + Z350; group 4, Tetric N-Ceram Bulk Fill (Ivoclar Vivadent, Schaan, Liechtenstein); and group 5, SonicFill (Kerr, West Collins, Orange, CA, USA). After thermo-mechanical load cycling, cross-sectional microcomputerized tomography (micro-CT) images were taken. Internal adaptation was measured as imperfect margin percentage (IM%), which was the percentage of defective margin length relative to whole margin length. On the micro-CT images, IM% was measured at five interfaces. Linear polymerization shrinkage (LS) and polymerization shrinkage stress (PS) were measured on each composite with a custom linometer and universal testing machine. To explore the correlation of IM% and LS or PS, the Pearson correlation test was used. Results: The IM% of the gingival and pulpal cavity floors were inferior to those of the cavity walls. The IM% values of the groups were found to be as follows: group 5 ≤ groups 1 and 4 ≤ group 2 ≤ group 3. The correlation analysis showed that the p value was 0.006 between LS and IM% and 0.003 between PS and IM%, indicating significant correlations (p<0.05). Conclusion: Flowable bulk-fill composites had a higher IM% and polymerization shrinkage stress than did packable bulk-fill and hybrid composites. In class II composite restoration, the gingival floor of the proximal box and pulpal floor of the cavity had higher IM% than did the buccal and lingual walls of the proximal box. LS and PS, which were measured under compliance-allowed conditions, were significantly related to internal adaptation.


2021 ◽  
Author(s):  
KR Kantovitz ◽  
LL Cabral ◽  
NR Carlos ◽  
AZ de Freitas ◽  
DC Peruzzo ◽  
...  

SUMMARY The aim of this in vitro study was to quantitatively evaluate the internal gap of resin composites of high-and low-viscosity used in single- and incremental-fill techniques in Class I cavities exposed to thermal cycling (TC) using optical coherence tomography (OCT). Cavities of 4-mm depth and 3-mm diameter were prepared in 36 third molars randomly distributed into four groups, according to viscosity of restorative resin-based composite (high or low viscosity, all from 3M Oral Care) and technique application (bulk or incremental fill) used (n=9): RC, high-viscosity, incremental-fill, resin-based composite (Filtek Z350 XT Universal Restorative); BF, high-viscosity, bulk-fill, resin-based composite (Filtek One Bulk Fill); LRC, low-viscosity, incremental-fill, resin-based composite (Filtek Z350 XT Flowable Universal Restorative); and LBF, low-viscosity, bulk-fill, resin-based composite (Filtek Flowable Restorative). Single Bond Universal Adhesive system (3M Oral Care) was used in all the experimental groups. The incremental-fill technique was used for RC and LRC groups (2-mm increments), and a single-layer technique was used for BF and LBF groups, as recommended by the manufacturer. The internal adaptation of the resin at all dentin walls was evaluated before and after TC (5000 cycles between 5°C and 55°C) using OCT images. Five images of each restored tooth were obtained. Images were analyzed using ImageJ software that measured the entire length of the gaps at the dentin–restoration interface. The length of gaps (μm) was analyzed using two-way repeated measures ANOVA and the Tukey tests (α=0.05). There was a significant interaction between material types and TC (p=0.006), and a significant difference among all material types (p<0.0001), before and after TC (p<0.0001). Increased internal gaps at the dentin–restoration interface were noticed after TC for all groups. RC presented the lowest value of internal gap before and after TC, while LBF showed the highest values of internal gap after TC. In conclusion, TC negatively affected the integrity of internal gap, whereas high-viscosity, incremental-fill, resin-based composite presented better performance in terms of internal adaptation than low-viscosity, bulk-fill materials in Class I cavities.


2020 ◽  
Vol 45 (3) ◽  
pp. 306-317
Author(s):  
K Kaczor ◽  
M Krasowski ◽  
S Lipa ◽  
J Sokołowski ◽  
A Nowicka

SUMMARY Objective: This study evaluated the effect of etching mode and thermomechanical loading on universal adhesives. Methods and Materials: Two universal adhesives, Peak Universal and Adhese Universal, were used in two etching modes as the experimental groups: Peak Universal etch-and-rinse (PER), Peak Universal self-etch (PSE), Adhese Universal etch-and-rinse (AER), and Adhese Universal self-etch (ASE). Two adhesives considered gold standards were used as control groups: OptiBond FL (OER) was used as a control group for the etch-and-rinse (ER) mode, and Clearfil SE Bond (CSE) was used as a control group for the self-etch (SE) mode. Standardized class V cavities were created on the buccal and lingual surface in 30 extracted caries-free human third molars. Each adhesive and resin composite was applied according to the manufacturer's instructions. The specimens were subjected to thermomechanical loading (TML) immediately after the fillings were placed. Before and after TML, replicas and photographs of the fillings were performed and evaluated quantitatively and qualitatively. The Mann-Whitney U-test or Kruskal-Wallis test was used for quantitative analyses, and Fisher exact test was used for qualitative analysis. Results: Adhese Universal achieved a significantly higher percentage of continuous margin in the enamel than Peak Universal for the two types of etching both before and after TML (except for the SE group after TML). In dentin, the greatest percentage of continuous margin was achieved for Adhese Universal in the ER group (100%) before TML and for both universal adhesives in the SE groups (61%) after TML. For both etching modes and both time points, Adhese Universal had a greater percentage of continuous margin than Peak Universal for the whole margin. For the ER approach, significant differences were observed both before and after TML, and for the SE approach, significant differences were observed before TML. TML did not cause a significant decrease in the percentage of continuous margin in the enamel, but the results were the opposite in dentin. A qualitative assessment using World Dental Federation criteria did not show statistically significant differences between the groups. Conclusions: Scanning electron microscope assessment of marginal integrity showed that the evaluated factors such as etching mode and TML significantly influenced the marginal integrity of the universal adhesives. The replica method shows that laboratory and clinical assessment methods complement each other and give a broader view of marginal integrity.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Adrian Tudor Stan ◽  
Laura Cîrligeriu ◽  
Laura Idorași ◽  
Meda Lavinia Negruțiu ◽  
Cosmin Sinescu ◽  
...  

The aim of the study was to determine the marginal and internal adaptation after curing of different composite resin restorations, using a nondestructive X-ray micro-computed tomography (micro-CT). Forty previously extracted human molars, kept in 10% formalin to preserve the bonding capabilities of the tooth structures, were divided into four groups based on the composite system used and different light-curing times. Class II (vertical slot) cavities were prepared on one proximal side and restored with dental composite using a Tofflemire matrix, with a bulk-fill composite resin (Venus Bulk Fill, Heraeus Kulzer) and a universal posterior composite (G-ænial Posterior, GC). A curing lamp (Kerr Demi Ultra) was used with different curing times. Micro-CT scanning was performed by using Nikon XTH 225ST to reveal any defects in adaptation or gaps at the tooth restoration interface. The 3D images of the adaptation around the restorations were reconstructed using VG Studio Max 2.2 and myVGL 2.2.6 64-bit software. All samples from the G-ænial group showed marginal and internal gaps, with G-ænial Posterior having higher polymerization shrinkage and marginal gap values. In the Venus Bulk Fill group, there were fewer restorations with internal and external gap formation. Micro-CT is a three-dimensional imaging technique that can nondestructively detect adaptation around the resin composite restorations at every level of the sample.


2004 ◽  
Vol 57 (11-12) ◽  
pp. 556-560
Author(s):  
Larisa Blazic ◽  
Dubravka Markovic ◽  
Milanko Djuric

Introduction Dimensional stability of polymer-based dental materials is compromised by polymerization reaction of the monomer. The conversion into a polymer is accompanied by a closer packing of molecules, which leads to volume reduction called curing contraction or polymerization shrinkage. Curing contraction may break the adhesion between the adhesive system and hard tooth tissues forming micrographs which may result in marginal deterioration, recurrent caries and pulp injury. Polymerization shrinkage of resin-based restorative dental materials Polymerization of the organic phase (monomer molecules) of resin-based dental materials causes shrinkage. The space occupied by filler particles is not associated with polymerization shrinkage. However, high filler loading within certain limits, can contribute to a lesser curing contraction. Polymerization shrinkage stress and stress reduction possibilities Polymerization shrinkage stress of polymer-based dental resins can be controlled in various ways. The adhesive bond in tooth-restoration interface guides the contraction forces to cavity walls. If leakage occurs, complications like secondary caries and pulpal irritation may jeopardize the longevity of a restoration. Stress relieve can be obtained by modifications of the monomer and photoinitiator, or by specially designed tooth preparation and application of bases and liners of low modulus of elasticity. The polymerization contraction can be compensated by water absorption due to oral cavity surrounding. The newest approach to stress relief is based on modulation of polymerization initiation. Conclusion This work deals with polymerization contraction and how to achieve leak-proof restoration. Restorative techniques that may reduce the negative effect of polymerization shrinkage stress need further research in order to confirm up-to-date findings.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Alexandra Vinagre ◽  
João Ramos ◽  
Sofia Alves ◽  
Ana Messias ◽  
Nélia Alberto ◽  
...  

Polymerization shrinkage is a major concern to the clinical success of direct composite resin restorations. The aim of this study was to compare the effect of polymerization shrinkage strain of two resin composites on cuspal movement based on the use of fiber Bragg grating (FBG) sensors. Twenty standardized Class II cavities prepared in upper third molars were allocated into two groups (n=10). Restorations involved the bulk fill placement of conventional microhybrid resin composite (Esthet•X® HD, Dentsply DeTrey) (Group 1) or flowable “low-shrinkage” resin composite (SDR™, Dentsply DeTrey) (Group 2). Two FBG sensors were used per restoration for real-time measurement of cuspal linear deformation and temperature variation. Group comparisons were determined using ANCOVA(α=0.05)considering temperature as the covariate. A statistically significant correlation between cuspal deflection, time, and material was observed (p<0.01). Cuspal deflection reached 8.8 μm (0.23%) and 7.8 μm (0.20%) in Groups 1 and 2, respectively. When used with bulk fill technique, flowable resin composite SDR™induced significantly less cuspal deflection than the conventional resin composite Esthet•X® HD (p=0.015) and presented a smoother curve slope during the polymerization. FBG sensors appear to be a valid tool for accurate real-time monitoring of cuspal deformation.


2020 ◽  
Vol 45 (4) ◽  
pp. E207-E216 ◽  
Author(s):  
AMO Correia ◽  
MR Andrade ◽  
JPM Tribst ◽  
ALS Borges ◽  
TMF Caneppele

Clinical Relevance Restoring Class V cavities with a regular bulk-fill composite presents a more favorable biomechanical behavior than restoring with a regular nano-filled composite. SUMMARY Purpose: This study evaluated the influence of Class V cavity extension and restorative material on the marginal gap formation, before and after aging, and the theoretical polymerization shrinkage stress distribution in a tooth restoration. Methods and Materials: Class V cavities with the depth of 2 mm, cervical/incisal distance of 4 mm, and margins located in the enamel 1 mm above the cementoenamel junction were prepared in 60 bovine incisors in two mesiodistal dimensions (n=30): 2.9-mm large extension cavities (LE) or 1.4-mm small extension cavities (SE). The cavities' depths were validated using a periodontal probe, while the mesiodistal and cervical/incisal distances were measured using a stereomicroscope. After adhesive application (Clearfil SE Bond), each group was randomly divided into two groups (n=15) according to the restorative material: Filtek Z350 XT (N) or Filtek Bulk Fill Posterior (BF). The marginal gap formation between the tooth structure and the restorative material was evaluated using a stereomicroscope before and after thermocycling for 15,000 cycles (5°C and 55°C). Data were analyzed using repeated-measures analysis of variance (ANOVA) and Tukey test for multiple comparisons (α=0.05). A three-dimensional geometric model with the same dimensions as the experimental test was created for each cavity, and the restorations were modeled for each restorative material. In the analysis software, the finite element mesh was created with tetrahedral quadratic elements, and the polymerization shrinkage was simulated by thermal analogy. The maximum principal stress was used to express the tensile stress in the adhesive interface through colorimetric graphs. Results: For the marginal gap, the repeated-measures ANOVA revealed a significant effect only for the factors composite resin (df=1, F=4.09, p=0.04) and thermal aging (df=1, F=44.35, p&lt;0.001). For all numerical simulations, higher stress concentration occurred at the enamel margin, and the stress peak decreased in the following sequence: LE-N (17.0 MPa) &gt; SE-N (15.0 MPa) &gt; LE-BF (9.1 MPa) &gt; SE-BF (8.2 MPa). Conclusion: Marginal gaps in the specimens fell between approximately 12 and 17 μm; however, the regular bulk-fill composite showed less gap formation and better stress distribution around the cavity margin than the regular nano-filled composite, regardless of the cavity extension.


Sign in / Sign up

Export Citation Format

Share Document