scholarly journals Air Abrasion Before and/or After Zirconia Sintering: Surface Characterization, Flexural Strength, and Resin Cement Bond Strength

2015 ◽  
Vol 40 (2) ◽  
pp. E66-E75 ◽  
Author(s):  
FO Abi-Rached ◽  
SB Martins ◽  
AA Almeida-Júnior ◽  
GL Adabo ◽  
M Sousa Góes ◽  
...  

SUMMARY The purpose of this in vitro study was to evaluate the effect of air-abrasion/zirconia sintering order on the yttria partially stabilized tetragonal zirconia polycrystal (Y-TZP) surface characterization (roughness, morphology, and phase transformation), flexural strength (FS), and shear bond strength (SBS) to a resin cement. Y-TZP specimens were air abraded with 50-μm Al2O3 particles after (AS), before (BS), or before and after zirconia sintering (BAS). For roughness (Ra), 30 block specimens (12×12×3.0 mm; n=10) had their surfaces analyzed by a profilometer. Next, on the air-abraded surfaces of these specimens, composite resin discs (n=30) were bonded with RelyX ARC. The bonded specimens were stored for 24 hours in distilled water at 37°C before shear testing. Failure mode was determined with a stereomicroscope (20×). The surface morphology (n=2) was evaluated by SEM (500×). For the four-point flexural strength test (EMIC DL2000), 39 bar-shaped specimens (20×4.0×1.2 mm; n=13) were air abraded according to the three conditions proposed, and an additional group (nonabraded) was evaluated (n=13). The quantitative analysis of phase transformation (n=1) was completed with Rietveld refinement with X-ray diffraction data. Ra (μm) and SBS (MPa) data were analyzed by one-way analysis of variance (ANOVA) and the Tukey test (α=0.05). Pearson correlation analysis was used to determine if there was a correlation between roughness and SBS. For FS (MPa) data, one-way ANOVA and the Dunnett C-test (α=0.05) were used. The air-abrasion/zirconia sintering order influenced significantly (p<0.001) Ra, SBS, and FS. The BS and AS groups presented the highest (1.3 μm) and the lowest (0.7 μm) Ra. The highest SBS (7.0 MPa) was exhibited by the BAS group, followed by the AS group (5.4 MPa) and finally by the BS group (2.6 MPa). All groups presented 100% adhesive failure. A weak correlation (r=−0.45, p<0.05) was found between roughness and SBS. The air-abrasion/zirconia sintering order provided differences in the surface morphology. The nonabraded (926.8 MPa) and BS (816.3 MPa) groups exhibited statistically similar FS values but lower values than the AS (1249.1 MPa) and BAS (1181.4 MPa) groups, with no significant difference between them. The nonabraded, AS, BS, and BAS groups exhibited, respectively, percentages of monoclinic phase of 0.0 wt%, 12.2 wt%, 0.0 wt%, and 8.6 wt%. The rougher surface provided by the air-abrasion before zirconia sintering may have impaired the bonding with the resin cement. The morphological patterns were consistent with the surface roughness. Considering the short-term SBS and FS, the BAS group exhibited the best performance. Air abrasion, regardless of its performance order, provides tetragonal to monoclinic transformation, while sintering tends to zero the monoclinic phase content.

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1409
Author(s):  
You-Jung Kang ◽  
Yooseok Shin ◽  
Jee-Hwan Kim

This study evaluated the shear bond strength (SBS) and biaxial flexural strength (BFS) of resin cements according to the surface treatment method using low-temperature hot etching with hydrofluoric acid (HF) on a yttrium-stabilized tetragonal zirconia (Y-TZP) surface; 96 discs and 72 cubes for BFS and SBS tests for Y-TZP were randomly divided into four groups of BFS and three groups of SBS. Specimens were subjected to the following surface treatments: (1) no treatment (C), (2) air abrasion with 50 μm Al2O3 particles (A), (3) hot etching with HF at 100 °C for 10 min (E), and (4) air abrasion + hot etching (AE). After treatments, the specimens were coated with primer, and resin cement was applied with molds. The specimens were evaluated for roughness (Ra) via scanning electron microscopy and x-ray diffraction, and the data were analyzed by an analysis of variance (ANOVA) and Kruskal–Wallis tests. Group E produced significantly higher SBS compared to group A and AE before and after thermocycling. The BFSs of all groups showed no significant differences before thermocycling; however, after thermocycling, C and E treatment groups were significantly higher compared to group A and AE. All groups showed phase transformation. Group E was observed lower monoclinic phase transformation compared to other groups.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7058
Author(s):  
Akane Chin ◽  
Masaomi Ikeda ◽  
Tomohiro Takagaki ◽  
Toru Nikaido ◽  
Alireza Sadr ◽  
...  

The purpose of this study was to evaluate the effect of one week of Computer-aided design/Computer-aided manufacturing (CAD/CAM) crown storage on the μTBS between resin cement and CAD/CAM resin composite blocks. The micro-tensile bond strength (μTBS) test groups were divided into 4 conditions. There are two types of CAD/CAM resin composite blocks, namely A block and P block (KATANA Avencia Block and KATANA Avencia P Block, Kuraray Noritake Dental, Tokyo, Japan) and two types of resin cements. Additionally, there are two curing methods (light cure and chemical cure) prior to the μTBS test—Immediate: cementation was performed immediately; Delay: cementation was conducted after one week of storage in air under laboratory conditions. The effect of Immediate and Delayed cementations were evaluated by a μTBS test, surface roughness measurements, light intensity measurements, water sorption measurements and Scanning electron microscope/Energy dispersive X-ray spectrometry (SEM/EDS) analysis. From the results of the μTBS test, we found that Delayed cementation showed significantly lower bond strength than that of Immediate cementation for both resin cements and both curing methods using A block. There was no significant difference between the two types of resin cements or two curing methods. Furthermore, water sorption of A block was significantly higher than that of P block. Within the limitations of this study, alumina air abrasion of CAD/CAM resin composite restorations should be performed immediately before bonding at the chairside to minimize the effect of humidity on bonding.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hasan Skienhe ◽  
Roland Habchi ◽  
Hani Ounsi ◽  
Marco Ferrari ◽  
Ziad Salameh

This study evaluated the effect of air abrasion before and after sintering with different particle type, shape, and size on the surface morphology, monoclinic phase transformation, and bond strength between resin cement and zirconia surface using primer containing silane and MDP. Airborne particle abrasion (APA) was performed on zirconia before and after sintering with different particle shape and size (50 μm Al2O3 and 25 μm silica powder). 120 square shaped presintered zirconia samples (Amann Girrbach) were prepared (3 mm height × 10 mm width × 10 mm length) and polished with grit papers #800, 1000, 1200, 1500, and 2000. Samples were divided into 6 groups according to surface treatment—group A: (control) no surface treatment; group B: APA 50 μm Al2O3 before sintering (BS); group C: APA 50 μm Al2O3 after sintering (AS); group D: APA25 μm silica powder (BS); group E: APA25 μm silica powder (AS) at a pressure of 3.5 bar; and group F: APA 25 μm silica powder (AS) at a pressure of 4 bar. Samples were analyzed using XRD, AFM, and SEM. The samples were submitted to shear bond strength (SBS) test. A dual cure resin cement (RelyX Ultimate) and primer (Scotchbond Universal) were used. Data were analyzed with ANOVA and Tukey test (α≥0.05). APA in group B significantly increased the surface roughness when compared to all other groups. A significant monoclinic phase transformation (t-m) value was observed in groups C and F and a reverse transformation occurred in presintered groups. The SBS value of group A was 11.58±1.43 and the highest significant shear bond strength value was for groups B (15.86±1.92) and C (17.59±2.21 MPa) with no significant difference between them. Conclusions. The use of APA 50 μm Al2O3 before sintering and the application of primer containing MDP seem to be valuable methods for durable bonding with zirconia. The use of APA 50 μm Al2O3 after sintering induced the highest (t-m) phase transformation.


Coatings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 182
Author(s):  
Mohamed Abdalla ◽  
Christie Lung ◽  
James Tsoi ◽  
Jukka Matinlinna

Purpose: To evaluate the effect of high-silica coating deposited by high-silica physical vapor deposition (PVD) as a chemical bonding method on resin-zirconia bond strength under different aging conditions. Methods: Twelve Y-TZP blocks were used as the substrates. Four resin cement stubs were bonded on each Y-TZP block, with a total number of 48 resin cement stubs. Two test groups (n = 24) were evaluated: conventional Tribochemical silica-coating (TSC) and high-silica PVD with high ionization sputtering processing. Experimental silane primer (MPS) was brushed over the surface treated Y-TZP blocks, then a polyethylene mold was placed over the coated Y-TZP blocks and filled with the adhesive resin cement, then light-cured for 40 s. The shear bond strength (SBS) was then evaluated in dry condition and after thermo-cycling for 6000 cycles. Surface roughness, mode of failure, surface topography and elemental analysis were also evaluated. Results: In dry condition, PVD-coated zirconia specimens showed significantly higher mean SBS values (11.7 ± 1.3 MPa) compared to TSC (10.2 ± 1.1 MPa) (p = 0.027). The SBS values of TSC and PVD-coated samples after thermo-cycling were higher than in dry condition, but with no statistical significant difference (p > 0.05). Tetragonal-to-monoclinic phase transformation was detected in TSC, but not in PVD-coated zirconia. Significant decrease in surface roughness of PVD samples compared to TSC samples (p < 0.001). The silica content in PVD coating was 51% as detected by EDX. Conclusions: High-silica PVD coating on zirconia can give a reliable resin-zirconia chemical bond without any phase transformation and surface destruction by conventional grit-blasting.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 927
Author(s):  
Pirat Karntiang ◽  
Hiroshi Ikeda ◽  
Yuki Nagamatsu ◽  
Hiroshi Shimizu

The purpose of this study was to clarify the influence of alumina air-abrasion on flexural and bond strengths of CAD/CAM composites. The flexural strength (FS) of two brands of commercial CAD/CAM composites was investigated by the three-point bending test using two specimen designs: the single-bar according to the ISO standard and the bonded-double-bar fabricated by bonding two bars with a resin cement. The bond strength between the composites and the resin cement was measured by a conventional shear bond strength (SBS) test. The FS of single-bar specimens was significantly decreased by the air-abrasion. For the FS of the bonded-double-bar specimen, on the other hand, there was no significant difference between the specimens with/without air-abrasion. The SBS for the composites was significantly increased by air-abrasion. The results suggest that alumina air-abrasion improves the SBS of the composites while weakening its FS. Contrarily, the FS of the air-abraded composite did not decrease when the composites were bonded with the resin cement.


2021 ◽  
Vol 15 (3) ◽  
pp. 210-218
Author(s):  
Niknaz Yahyazadehfar ◽  
Maryam Azimi Zavaree ◽  
Sayed Shojaedin Shayegh ◽  
Mobin Yahyazadehfar ◽  
Tabassom Hooshmand ◽  
...  

Background. Interfacial failures at the cement‒restoration interface highlights the importance of effective surface treatment with no adverse effect on the zirconia’s mechanical properties. This study aimed to determine the effect of different surface treatments on dental graded zirconia’s surface roughness and certain mechanical properties. Methods. Forty sintered zirconia specimens were randomly divided into four groups (n=10): control (no surface treatment), sandblasting (SA), grinding with diamond bur (GB), and Er,Cr:YSGG laser (LS). Following surface treatment, the surface roughness and surface topography of the specimens were examined. X-ray diffraction (XRD) was conducted. In addition, the biaxial flexural strengths of specimens were evaluated. The data were analyzed using one-way analysis of variance (ANOVA) and post hoc Tukey tests; the Pearson correlation coefficient was calculated between either volumetric percentage of monoclinic phase or roughness and flexural strength of specimens (α=0.05). Results. The GB group exhibited significantly greater surface roughness compared to the other groups (P<0.005). The LS and control groups exhibited a significantly lower volumetric percentage of the monoclinic phase (P<0.001) than the GB and SA treatments. The SA group exhibited significantly higher flexural strength than the control (P=0.02) and GB groups (P<0.01). Furthermore, the Weibull analysis for the LS showed higher reliability for the flexural strength than other treatments. Conclusion. Er,Cr:YSGG laser treatment, with the lowest extent of phase transformation and reliable flexural strength, can be a promising choice for surface treatment of zirconia.


2019 ◽  
Vol 18 ◽  
pp. e191405
Author(s):  
Karla Zancope ◽  
Thácio de Castro ◽  
Lucas do Nascimento Tavares ◽  
Marcel Santana Prudente ◽  
Flávio Domingues das Neves

Aim: The crystallization step is required for lithium disilicate ceramics to change color, improve the mechanical properties and yield material to support mouth loading. Several furnaces could complete the crystallization process. This study evaluated the flexural and bond strength of lithium disilicate ceramics crystallized by different furnaces with the presence or not of vacum and different holding time. Methods: Forty lithium disilicate samples were divided into two groups: Programat P300 - control group with vacuum and holding time 7 minutes (CG) and FVPlus- experimental group and without vacuum and holding time 25 minutes (EG) and submitted to 2 experimental tests: 3-point flexural strength test and micro shear bond strength test (µSBS). For this test, the surface of the samples was treated and 1mm² of resin cement was applied on the surface. The samples were stored in artificial saliva over 2 time periods (24 hours: T0; 1-month storage: T1). To analyze the morphologic crystals of the ceramics tested, one representative specimen from each group were analyzed by using Scanning Electron Microscopy (SEM). Results: There was no significant difference in 3-point flexural strength test between groups CG and EG (p= 0.984). The µSBS results showed no statistical difference between groups, considering different storage time. There was no difference in the 3-point flexural strength and μSBS for lithium disilicate samples regardless of heat treatment of furnace type. The storage time had no influence on the μSBS. No differences were noted in the shape and size of these crystals when comparing the furnace analyzed by SEM images. Conclusion: Different furnaces did not influence the flexural and bond strength of lithium disilicate ceramics.


2016 ◽  
Vol 95 (13) ◽  
pp. 1487-1493 ◽  
Author(s):  
N. Hirose ◽  
R. Kitagawa ◽  
H. Kitagawa ◽  
H. Maezono ◽  
A. Mine ◽  
...  

An experimental cavity disinfectant (ACC) that is intended to be used for various direct and indirect restorations was prepared by adding an antibacterial monomer 12-methacryloyloxydodecylpyridinum bromide (MDPB) at 5% into 80% ethanol. The antibacterial effectiveness of ACC and its influences on the bonding abilities of resin cements were investigated. To examine the antibacterial activity of unpolymerized MDPB, the minimum inhibitory and bactericidal concentrations (MIC and MBC) were determined for Streptococcus mutans, Lactobacillus casei, Actinomyces naeslundii, Parvimonas micra, Enterococcus faecalis, Fusobacterium nucleatum, and Porphyromonas gingivalis. Antibacterial activities of ACC and the commercial cavity disinfectant containing 2% chlorhexidine and ethanol (CPS) were evaluated by agar disk diffusion tests through 7 bacterial species and by MIC and MBC measurement for S. mutans. The effects of ACC and CPS to kill bacteria in dentinal tubules were compared with an S. mutans–infected dentin model. Shear bond strength tests were used to examine the influences of ACC on the dentin-bonding abilities of a self-adhesive resin cement and a dual-cure resin cement used with a primer. Unpolymerized MDPB showed strong antibacterial activity against 7 oral bacteria. ACC produced inhibition zones against all bacterial species similar to CPS. For ACC and CPS, the MIC value for S. mutans was identical, and the MBC was similar with only a 1-step dilution difference (1:2). Treatment of infected dentin with ACC resulted in significantly greater bactericidal effects than CPS ( P < 0.05, analysis of variance and Tukey’s honest significant difference test). ACC showed no negative influences on the bonding abilities to dentin for both resin cements, while CPS reduced the bond strength of the self-adhesive resin cement ( P < 0.05). This study clarified that the experimental cavity disinfectant containing 5% MDPB is more effective in vitro than the commercially available chlorhexidine solution to eradicate bacteria in dentin, without causing any adverse influences on the bonding abilities of resinous luting cements.


2016 ◽  
Vol 17 (11) ◽  
pp. 920-925 ◽  
Author(s):  
Bandar MA Al-Makramani ◽  
Fuad A Al-Sanabani ◽  
Abdul AA Razak ◽  
Mohamed I Abu-Hassan ◽  
Ibrahim Z AL-Shami ◽  
...  

ABSTRACT Aim The aim of this study was to evaluate the effect of surface treatments on shear bond strength (SBS) of Turkom-Cera (Turkom-Ceramic (M) Sdn. Bhd., Puchong, Malaysia) all-ceramic material cemented with resin cement Panavia-F (Kuraray Medical Inc., Okayama, Japan). Materials and methods Forty Turkom-Cera ceramic disks (10 mm × 3 mm) were prepared and randomly divided into four groups. The disks were wet ground to 1000-grit and subjected to four surface treatments: (1) No treatment (Control), (2) sandblasting, (3) silane application, and (4) sandblasting + silane. The four groups of 10 specimens each were bonded with Panavia-F resin cement according to manufacturer's recommendations. The SBS was determined using the universal testing machine (Instron) at 0.5 mm/min crosshead speed. Failure modes were recorded and a qualitative micromorphologic examination of different surface treatments was performed. The data were analyzed using the one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. Results The SBS of the control, sandblasting, silane, and sandblasting + silane groups were: 10.8 ± 1.5, 16.4 ± 3.4, 16.2 ± 2.5, and 19.1 ± 2.4 MPa respectively. According to the Tukey HSD test, only the mean SBS of the control group was significantly different from the other three groups. There was no significant difference between sandblasting, silane, and sandblasting + silane groups. Conclusion In this study, the three surface treatments used improved the bond strength of resin cement to Turkom-Cera disks. Clinical significance The surface treatments used in this study appeared to be suitable methods for the cementation of glass infiltrated all-ceramic restorations. How to cite this article Razak AAA, Abu-Hassan MI, AL-Makramani BMA, AL-Sanabani FA, AL-Shami IZ, Almansour HM. Effect of Surface Treatments on the Bond Strength to Turkom-Cera All-Ceramic Material. J Contemp Dent Pract 2016;17(11):920-925.


Sign in / Sign up

Export Citation Format

Share Document