Diagnostic accuracy of serological tests for COVID-19: a systematic review and meta-analysis of cohort studies

Author(s):  
Clístenes C. de CARVALHO ◽  
Moara M. CARDOZO ◽  
Rebeca GONELLI ◽  
Stéphanie L. REGUEIRA ◽  
Ana B. SOUZA ◽  
...  
BMJ ◽  
2020 ◽  
pp. m2516 ◽  
Author(s):  
Mayara Lisboa Bastos ◽  
Gamuchirai Tavaziva ◽  
Syed Kunal Abidi ◽  
Jonathon R Campbell ◽  
Louis-Patrick Haraoui ◽  
...  

AbstractObjectiveTo determine the diagnostic accuracy of serological tests for coronavirus disease-2019 (covid-19).DesignSystematic review and meta-analysis.Data sourcesMedline, bioRxiv, and medRxiv from 1 January to 30 April 2020, using subject headings or subheadings combined with text words for the concepts of covid-19 and serological tests for covid-19.Eligibility criteria and data analysisEligible studies measured sensitivity or specificity, or both of a covid-19 serological test compared with a reference standard of viral culture or reverse transcriptase polymerase chain reaction. Studies were excluded with fewer than five participants or samples. Risk of bias was assessed using quality assessment of diagnostic accuracy studies 2 (QUADAS-2). Pooled sensitivity and specificity were estimated using random effects bivariate meta-analyses.Main outcome measuresThe primary outcome was overall sensitivity and specificity, stratified by method of serological testing (enzyme linked immunosorbent assays (ELISAs), lateral flow immunoassays (LFIAs), or chemiluminescent immunoassays (CLIAs)) and immunoglobulin class (IgG, IgM, or both). Secondary outcomes were stratum specific sensitivity and specificity within subgroups defined by study or participant characteristics, including time since symptom onset.Results5016 references were identified and 40 studies included. 49 risk of bias assessments were carried out (one for each population and method evaluated). High risk of patient selection bias was found in 98% (48/49) of assessments and high or unclear risk of bias from performance or interpretation of the serological test in 73% (36/49). Only 10% (4/40) of studies included outpatients. Only two studies evaluated tests at the point of care. For each method of testing, pooled sensitivity and specificity were not associated with the immunoglobulin class measured. The pooled sensitivity of ELISAs measuring IgG or IgM was 84.3% (95% confidence interval 75.6% to 90.9%), of LFIAs was 66.0% (49.3% to 79.3%), and of CLIAs was 97.8% (46.2% to 100%). In all analyses, pooled sensitivity was lower for LFIAs, the potential point-of-care method. Pooled specificities ranged from 96.6% to 99.7%. Of the samples used for estimating specificity, 83% (10 465/12 547) were from populations tested before the epidemic or not suspected of having covid-19. Among LFIAs, pooled sensitivity of commercial kits (65.0%, 49.0% to 78.2%) was lower than that of non-commercial tests (88.2%, 83.6% to 91.3%). Heterogeneity was seen in all analyses. Sensitivity was higher at least three weeks after symptom onset (ranging from 69.9% to 98.9%) compared with within the first week (from 13.4% to 50.3%).ConclusionHigher quality clinical studies assessing the diagnostic accuracy of serological tests for covid-19 are urgently needed. Currently, available evidence does not support the continued use of existing point-of-care serological tests.Study registrationPROSPERO CRD42020179452.


2021 ◽  
Vol 3 (4) ◽  
pp. 283-301
Author(s):  
Carmel Reina R. Chua ◽  
Esther Delle E. De los Santos ◽  
Karla Veronica H. Escasa ◽  
Richmond Louis G. Estolas ◽  
Junnealyn Feliciano ◽  
...  

Introduction: Coronavirus Disease (COVID-19) is a highly infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) which has infected many people all over the world. One of the best ways to lessen its spread is through early detection and diagnosis. Various serological tests are now being used as a surveillance tool in the detection of antibodies as a response to SARS-CoV-2. The aim of this study is to evaluate the diagnostic accuracy and performance of the available COVID-19 antibody tests authorized by the Food and Drug Administration (FDA) Philippines that make use of Enzyme-Linked Immunosorbent Assay (ELISA), Chemiluminescence Immunoassay (CLIA) and Lateral Flow Immunoassay (LFIA). Method: Complete published journal articles relevant to the diagnostic accuracy of the three antibody tests were collected using trusted medical journal search engines. The quality of journals was assessed using QUADAS-2 to determine the risk of bias and assess the applicability judgments of diagnostic accuracy studies. Forest plots were used to summarize the performance of LFIA, ELISA and CLIA according to their specificity and sensitivity in detecting various antibodies. Pooled sensitivity and specificity were also done using bivariate random-effects models with its log-likelihood, a corresponding chi-square test statistic, and area under the summary Receiver-Operating Characteristic curve to see the potential heterogeneity in the data and to assess the diagnostic accuracy of the COVID-19 antibody tests. Results: Bivariate random-effects model and areas under the sROC curve were used to evaluate the diagnostic accuracy of COVID-19 antibody tests. The pooled sensitivity in detecting IgG based on CLIA, ELISA, and LFIA were 81.7%, 58.7%, and 74.3% respectively, with an overall of 72.0%. For IgM detection, LFIA has a higher pooled sensitivity of 69.6% than CLIA with 61.0%. Overall, the pooled sensitivity is 68.5%. In IgA detection, only ELISA based test was included with a pooled sensitivity of 84.8%. Lastly, pooled sensitivities for combined antibodies based on ELISA and LFIA were 89.0% and 81.6% respectively, with an overall of 82.5%. On the other hand, all tests excluding ELISA-IgA displayed high pooled specificities with a range of 94.0% to 100.0%. Diagnostic accuracies of the test in detecting IgG, IgM, and combined antibodies were found out to be almost perfect based on the computed area under the sROC with values of 0.973, 0.953, and 0.966, respectively. Conclusion: In this systematic review and meta-analysis, existing evidence on the diagnostic accuracy of antibody tests for COVID-19 were found to be characterized by high risks of bias, consistency in the heterogeneity of sensitivities, and consistency in the homogeneity of high specificities except in IgA detection using ELISA. The bivariate random-effects models showed that there are no significant differences in terms of sensitivity among CLIA, ELISA and LFIA in detecting IgG, IgM, and combined antibodies at a 95% confidence interval. Nonetheless, CLIA, ELISA and LFIA were found to have excellent diagnostic accuracies in the detection of IgG, IgM and combined antibodies as reflected by their AUC values. Doi: 10.28991/SciMedJ-2021-0304-1 Full Text: PDF


2015 ◽  
Vol 19 (43) ◽  
pp. 1-336 ◽  
Author(s):  
Mark Simmonds ◽  
Jane Burch ◽  
Alexis Llewellyn ◽  
Claire Griffiths ◽  
Huiqin Yang ◽  
...  

BackgroundIt is uncertain which simple measures of childhood obesity are best for predicting future obesity-related health problems and the persistence of obesity into adolescence and adulthood.ObjectivesTo investigate the ability of simple measures, such as body mass index (BMI), to predict the persistence of obesity from childhood into adulthood and to predict obesity-related adult morbidities. To investigate how accurately simple measures diagnose obesity in children, and how acceptable these measures are to children, carers and health professionals.Data sourcesMultiple sources including MEDLINE, EMBASE and The Cochrane Library were searched from 2008 to 2013.MethodsSystematic reviews and a meta-analysis were carried out of large cohort studies on the association between childhood obesity and adult obesity; the association between childhood obesity and obesity-related morbidities in adulthood; and the diagnostic accuracy of simple childhood obesity measures. Study quality was assessed using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and a modified version of the Quality in Prognosis Studies (QUIPS) tool. A systematic review and an elicitation exercise were conducted on the acceptability of the simple measures.ResultsThirty-seven studies (22 cohorts) were included in the review of prediction of adult morbidities. Twenty-three studies (16 cohorts) were included in the tracking review. All studies included BMI. There were very few studies of other measures. There was a strong positive association between high childhood BMI and adult obesity [odds ratio 5.21, 95% confidence interval (CI) 4.50 to 6.02]. A positive association was found between high childhood BMI and adult coronary heart disease, diabetes and a range of cancers, but not stroke or breast cancer. The predictive accuracy of childhood BMI to predict any adult morbidity was very low, with most morbidities occurring in adults who were of healthy weight in childhood. Predictive accuracy of childhood obesity was moderate for predicting adult obesity, with a sensitivity of 30% and a specificity of 98%. Persistence of obesity from adolescence to adulthood was high. Thirty-four studies were included in the diagnostic accuracy review. Most of the studies used the least reliable reference standard (dual-energy X-ray absorptiometry); only 24% of studies were of high quality. The sensitivity of BMI for diagnosing obesity and overweight varied considerably; specificity was less variable. Pooled sensitivity of BMI was 74% (95% CI 64.2% to 81.8%) and pooled specificity was 95% (95% CI 92.2% to 96.4%). The acceptability to children and their carers of BMI or other common simple measures was generally good.LimitationsLittle evidence was available regarding childhood measures other than BMI. No individual-level analysis could be performed.ConclusionsChildhood BMI is not a good predictor of adult obesity or adult disease; the majority of obese adults were not obese as children and most obesity-related adult morbidity occurs in adults who had a healthy childhood weight. However, obesity (as measured using BMI) was found to persist from childhood to adulthood, with most obese adolescents also being obese in adulthood. BMI was found to be reasonably good for diagnosing obesity during childhood. There is no convincing evidence suggesting that any simple measure is better than BMI for diagnosing obesity in childhood or predicting adult obesity and morbidity. Further research on obesity measures other than BMI is needed to determine which is the best tool for diagnosing childhood obesity, and new cohort studies are needed to investigate the impact of contemporary childhood obesity on adult obesity and obesity-related morbidities.Study registrationThis study is registered as PROSPERO CRD42013005711.FundingThe National Institute for Health Research Health Technology Assessment programme.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
M. M. G. Leeflang ◽  
C. W. Ang ◽  
J. Berkhout ◽  
H. A. Bijlmer ◽  
W. Van Bortel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document