Ka-Band Circularly-Polarized Antenna Array with Wide Gain and Axial Ratio Bandwidth

Author(s):  
Amir Raeesi ◽  
Hussam Al-Saedi ◽  
Wael M. Abdel-Wahab ◽  
Suren Gigoyan ◽  
Safieddin Safavi Naeini
Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 651-655 ◽  
Author(s):  
Yilin Liu ◽  
Kama Huang

Abstract A novel design of a coplanar waveguide (CPW) feed antenna array with circular polarization (CP) and a high front-to-back ratio is described. The proposed CP array is achieved by using a compact CPW–slotline transition network etched in the ground plane. The measured results show that this kind of feeding method can improve the impedance bandwidth, as well as the axial ratio bandwidth of the CP antenna array and provide adequate gain. The proposed array can achieve a 6.08% impedance bandwidth and a 4.10% CP bandwidth. Details of the antenna design and experimental results are presented and discussed.


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 400 ◽  
Author(s):  
Wei Hu ◽  
Guangjun Wen ◽  
Daniele Inserra ◽  
Yongjun Huang ◽  
Jian Li ◽  
...  

A 2 × 2 circularly polarized (CP) sequential rotation microstrip patch antenna array with high gain for long-range ultra-high frequency (UHF) radio frequency identification (RFID) communication is proposed in this paper. In order to meet the operational frequency band requirement of 840–960 MHz and, at the same time, achieve enhanced broadside gain, a two-level sequential rotation structure is developed. Series power divider is used as the basic element of the feed network that is implemented with the substrate-integrated coaxial line technology for minimizing radiation losses. The manufactured prototype exhibits a peak gain of 12.5 dBic at 900 MHz and an axial ratio (AR) bandwidth (AR ≤ 3 dB) of 18.2% from 828 to 994 MHz. In comparison with the state-of-the-art, the proposed antenna shows an excellent gain/size trade-off.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Pingyuan Zhou ◽  
Zhuo Zhang ◽  
Mang He ◽  
Yihang Hao ◽  
Chuanfang Zhang

A small-size 2×2 broadband circularly polarized microstrip antenna array is proposed in this article. The array has four broadband dual-feed U-slot patch antenna elements with circular polarization, and the sequential feeding technique is used to further enhance the 3 dB axial ratio bandwidth. The lateral size of the fabricated array is as small as 1.33λ0×1.33λ0, and the profile is only 0.04λ0. Measured results show that the overlapped −10 dB reflection coefficient and the 3 dB AR bandwidth is 53%, and the variation of the measured realized gain is less than 1 dB for S-band satellite communications (1.98–2.2 GHz).


2017 ◽  
Vol 9 (8) ◽  
pp. 1741-1748 ◽  
Author(s):  
Mahdi Jalali ◽  
Mohammad Naser-Moghadasi ◽  
Ramezan Ali Sadeghzadeh

Wide-band circularly polarized multi-input multi-output (MIMO) antenna array with a 2 × 4 feed network was proposed for C-band application. Different unique techniques were utilized in the proposed array to enhance the antenna characteristics, such as gain, 3 dB axial ratio bandwidth (ARBW), impedance tuning, and ruinous mutual coupling effects. A miniaturized dual-feed Tai chi-shaped antenna element with a pair of feeding points and a pair of eyebrow-shaped strips was presented for enhancing circular polarization (CP) purity and impedance matching. For a better improvement of CP features, a 2*4 MIMO sequentially rotated (MIMO-SR) feed network was used to achieve broader 3 dB ARBW. Besides, the MIMO feature of the feed network could control the left- and right-handed CP, respectively. Ultimately, specific forms of slot and slit structures were applied onto the top layer of MIMO feed network that provided a high isolation between the radiating elements and array network. Furthermore, the diversity gain (DG) was studied. The extracted measured results illustrated an impedance bandwidth of 3.5–8.2 GHz at port 1 and 3.5–8.3 GHz at port 2 for VWSR < 2 and 3 dB ARBW of 4.6–7.6 GHz at port 1 and 4.6–7.5 GHz at port 2. The peak gain of 9.9 dBi was at 6 GHz.


2021 ◽  
Vol 11 (19) ◽  
pp. 8869
Author(s):  
Manzoor Elahi ◽  
Son Trinh-Van ◽  
Youngoo Yang ◽  
Kang-Yoon Lee ◽  
Keum-Cheol Hwang

In this article, a high gain and compact 4 × 4 circularly polarized microstrip patch antenna array is reported for the data transmission of the next-generation small satellite. The radiating element of the circularly polarized antenna array is realized by the conventional model of the patch with truncated corners. A compact two-stage sequential rotational phase feeding is adopted that broadens the operating bandwidth of the 4 × 4 array. A small stub is embedded in the sequential rotational feed, which results in better performance in terms of the S-parameters and sequential phases at the output ports than sequential rotational feed without open stub. A prototype of the array is fabricated and measured. Fulfilling the application requirements of the next-generation small satellites, the array has the left-handed circularly polarized gain of more than 12 dBic with the axial ratio level below 1.5 dB in the ±10∘ angular space with respect to the broadside direction for the whole bandwidth from 8.05 GHz to 8.25 GHz. Moreover, the left-handed circularly polarized gain varies from 15 to 15.5 dBic in the desired band. The radiation patterns are measured; both the co- and X-pol are validated.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huakang Chen ◽  
Yu Shao ◽  
Zhangjian He ◽  
Changhong Zhang ◽  
Zhizhong Zhang

A 2 × 2 wideband circularly polarized (CP) antenna array operating at millimeter wave (mmWave) band is presented. The array element is a wideband CP Archimedean spiral radiator with special-shaped ring slot. The elements are fed by an unequal amplitude (UA) feeding network based on a microstrip line (MSL) power divider. The side lobe level is improved by this UA feeding network. In addition, a cross slot is employed to isolate the elements for decoupling. A prototype is fabricated, and the measured results show that the proposed array achieves an impedance bandwidth (IBW) of 6.31 GHz (22.5% referring to 28 GHz) and an axial ratio bandwidth (ARBW) of 7.32 GHz (26.1% referring to 28 GHz). The peak gain of the proposed array is 11.3 dBic, and the gain is greater than 9.3 dBic within the whole desired band (from 25 GHz to 31 GHz). The proposed array consists of only one substrate layer and can be built by the conventional printed circuit board technology. Attributed to the characteristics of wide bandwidth, simple structure, low profile, and low cost, the proposed antenna array has a great potential in mmWave wireless communications.


A single feed microstrip patch elliptically annular antenna array has been proposed for high gain circularly polarized (CP) radiation. An array of elliptically annular patches antenna resonates at a frequency of 3.77 GHz which can be used in satellite communication and radar application. A corporate feed network with quarter-wave transformer has been used for uniform excitation of all the array elements. Thus a good circular polarization is obtained by using a single feed with enhanced gain 15.62 dB compared to single patch. The radiation pattern, axial ratio and input impedance of the proposed elliptically annular antenna array is compared with single element elliptically annular antenna. A substantial gain enhancement with low side lobe level (SLL) is observed keeping circular polarization intact. Further, simulated and measured results of the proposed antenna array have been compared and found that axial ratio and gain are in good agreement.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Rongling Jian ◽  
Yueyun Chen ◽  
Taohua Chen

In this paper, a novel wideband circularly polarized (CP) millimeter wave (mmWave) microstrip antenna is presented. The proposed antenna consists of a central patch and a microstrip line radiator. The CP radiation is achieved by loading a rectangular slot on the ground plane. To improve the 3-dB axial ratio bandwidth (ARBW), two symmetric parasitic rectangular patches paralleled to a central patch and a slit positioned to the right of the central patch are loaded. To verify this design, the proposed antenna is fabricated with a small antenna of 2.88 × 3.32 × 0.508 mm3. The measured impedance bandwidth (IMBW) for S11<−10 dB of the proposed antenna is 35.97% (22.8 to 33.8 GHz). Meanwhile, the simulation result shows that the 3-dB ARBW is 15.19% (28.77 to 33.5 GHz) within impedance bandwidth, and the peak gain is from 5.08 to 5.22 dBic within 3-dB ARBW. The proposed antenna is suitable for CP applications in the Ka-band.


Sign in / Sign up

Export Citation Format

Share Document