scholarly journals Enhanced Capabilities of the Nano-Electronic Simulation Software (NESS)

Author(s):  
Cristina Medina-Bailon ◽  
Oves Badami ◽  
Hamilton Carrillo-Nunez ◽  
Tapas Dutta ◽  
Daniel Nagy ◽  
...  
Author(s):  
Salim Berrada ◽  
Tapas Dutta ◽  
Hamilton Carrillo-Nunez ◽  
Meng Duan ◽  
Fikru Adamu-Lema ◽  
...  

2020 ◽  
Vol 19 (3) ◽  
pp. 1031-1046 ◽  
Author(s):  
Salim Berrada ◽  
Hamilton Carrillo-Nunez ◽  
Jaehyun Lee ◽  
Cristina Medina-Bailon ◽  
Tapas Dutta ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 680
Author(s):  
Cristina Medina-Bailon ◽  
Tapas Dutta ◽  
Ali Rezaei ◽  
Daniel Nagy ◽  
Fikru Adamu-Lema ◽  
...  

The modeling of nano-electronic devices is a cost-effective approach for optimizing the semiconductor device performance and for guiding the fabrication technology. In this paper, we present the capabilities of the new flexible multi-scale nano TCAD simulation software called Nano-Electronic Simulation Software (NESS). NESS is designed to study the charge transport in contemporary and novel ultra-scaled semiconductor devices. In order to simulate the charge transport in such ultra-scaled devices with complex architectures and design, we have developed numerous simulation modules based on various simulation approaches. Currently, NESS contains a drift-diffusion, Kubo–Greenwood, and non-equilibrium Green’s function (NEGF) modules. All modules are numerical solvers which are implemented in the C++ programming language, and all of them are linked and solved self-consistently with the Poisson equation. Here, we have deployed some of those modules to showcase the capabilities of NESS to simulate advanced nano-scale semiconductor devices. The devices simulated in this paper are chosen to represent the current state-of-the-art and future technologies where quantum mechanical effects play an important role. Our examples include ultra-scaled nanowire transistors, tunnel transistors, resonant tunneling diodes, and negative capacitance transistors. Our results show that NESS is a robust, fast, and reliable simulation platform which can accurately predict and describe the underlying physics in novel ultra-scaled electronic devices.


2020 ◽  
Vol 3 (4) ◽  
pp. 1-8
Author(s):  
Cristina Medina-Bailon ◽  
◽  
Tapas Dutta ◽  
Fikru Adamu-Lema ◽  
Ali Rezaei ◽  
...  

TAPPI Journal ◽  
2014 ◽  
Vol 13 (8) ◽  
pp. 65-78 ◽  
Author(s):  
W.B.A. (SANDY) SHARP ◽  
W.J. JIM FREDERICK ◽  
JAMES R. KEISER ◽  
DOUGLAS L. SINGBEIL

The efficiencies of biomass-fueled power plants are much lower than those of coal-fueled plants because they restrict their exit steam temperatures to inhibit fireside corrosion of superheater tubes. However, restricting the temperature of a given mass of steam produced by a biomass boiler decreases the amount of power that can be generated from this steam in the turbine generator. This paper examines the relationship between the temperature of superheated steam produced by a boiler and the quantity of power that it can generate. The thermodynamic basis for this relationship is presented, and the value of the additional power that could be generated by operating with higher superheated steam temperatures is estimated. Calculations are presented for five plants that produce both steam and power. Two are powered by black liquor recovery boilers and three by wood-fired boilers. Steam generation parameters for these plants were supplied by industrial partners. Calculations using thermodynamics-based plant simulation software show that the value of the increased power that could be generated in these units by increasing superheated steam temperatures 100°C above current operating conditions ranges between US$2,410,000 and US$11,180,000 per year. The costs and benefits of achieving higher superheated steam conditions in an individual boiler depend on local plant conditions and the price of power. However, the magnitude of the increased power that can be generated by increasing superheated steam temperatures is so great that it appears to justify the cost of corrosion-mitigation methods such as installing corrosion-resistant materials costing far more than current superheater alloys; redesigning biomassfueled boilers to remove the superheater from the flue gas path; or adding chemicals to remove corrosive constituents from the flue gas. The most economic pathways to higher steam temperatures will very likely involve combinations of these methods. Particularly attractive approaches include installing more corrosion-resistant alloys in the hottest superheater locations, and relocating the superheater from the flue gas path to an externally-fired location or to the loop seal of a circulating fluidized bed boiler.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 4-11
Author(s):  
MOHAMED CHBEL ◽  
LUC LAPERRIÈRE

Pulp and paper processes frequently present nonlinear behavior, which means that process dynam-ics change with the operating points. These nonlinearities can challenge process control. PID controllers are the most popular controllers because they are simple and robust. However, a fixed set of PID tuning parameters is gen-erally not sufficient to optimize control of the process. Problems related to nonlinearities such as sluggish or oscilla-tory response can arise in different operating regions. Gain scheduling is a potential solution. In processes with mul-tiple control objectives, the control strategy must further evaluate loop interactions to decide on the pairing of manipulated and controlled variables that minimize the effect of such interactions and hence, optimize controller’s performance and stability. Using the CADSIM Plus™ commercial simulation software, we developed a Jacobian sim-ulation module that enables automatic bumps on the manipulated variables to calculate process gains at different operating points. These gains can be used in controller tuning. The module also enables the control system designer to evaluate loop interactions in a multivariable control system by calculating the Relative Gain Array (RGA) matrix, of which the Jacobian is an essential part.


Author(s):  
Shreyanshu Parhi ◽  
S. C. Srivastava

Optimized and efficient decision-making systems is the burning topic of research in modern manufacturing industry. The aforesaid statement is validated by the fact that the limitations of traditional decision-making system compresses the length and breadth of multi-objective decision-system application in FMS.  The bright area of FMS with more complexity in control and reduced simpler configuration plays a vital role in decision-making domain. The decision-making process consists of various activities such as collection of data from shop floor; appealing the decision-making activity; evaluation of alternatives and finally execution of best decisions. While studying and identifying a suitable decision-making approach the key critical factors such as decision automation levels, routing flexibility levels and control strategies are also considered. This paper investigates the cordial relation between the system ideality and process response time with various prospective of decision-making approaches responsible for shop-floor control of FMS. These cases are implemented to a real-time FMS problem and it is solved using ARENA simulation tool. ARENA is a simulation software that is used to calculate the industrial problems by creating a virtual shop floor environment. This proposed topology is being validated in real time solution of FMS problems with and without implementation of decision system in ARENA simulation tool. The real-time FMS problem is considered under the case of full routing flexibility. Finally, the comparative analysis of the results is done graphically and conclusion is drawn.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1276-1282
Author(s):  
Nabeel I. Allawy ◽  
Amjad B. Abdulghafour

Reconstruction of the mandible after severe trauma is one of the most difficult challenges facing oral and maxillofacial surgery. The mandible is an essential element in the appearance of the human face that gives the distinctive shape of the face, holds. This paper aims to propose a methodology that allows the surgeon to perform virtual surgery by investing engineering programs to place the implant by default and with high accuracy within the mandible based on the patient's medical data. The current study involved a 35-year-old man suffering from a traffic accident in the mandible with multiple fractures of the facial bones. Basically, an identification of the steps required to perform virtual surgery and modeling images from the CBCT technology has been done by using the software proposed in the research. The implant model is designed as a mesh model, allowing the patient to return to a normal position. Moreover, an application of FEA procedures using the Solidworks simulation software to test and verify the mechanical properties of the final transplant.


2019 ◽  
Author(s):  
Chem Int

Model was developed for the prediction of polarization characteristics in a dielectric material exhibiting piezoelectricity and electrostriction based on mathematical equations and MATLAB computer simulation software. The model was developed based on equations of polarization and piezoelectric constitutive law and the functional coefficient of Lead Zirconate Titanate (PZT) crystal material used was 2.3×10-6 m (thickness), the model further allows the input of basic material and calculation of parameters of applied voltage levels, applied stress, pressure, dielectric material properties and so on, to generate the polarization curve, strain curve and the expected deformation change in the material length charts. The mathematical model revealed that an application of 5 volts across the terminals of a 2.3×10-6 m thick dielectric material (PZT) predicted a 1.95×10-9 m change in length of the material, which indicates piezoelectric properties. Both polarization and electric field curve as well as strain and voltage curve were also generated and the result revealed a linear proportionality of the compared parameters, indicating a resultant increase in the electric field yields higher polarization of the dielectric materials atmosphere.


Sign in / Sign up

Export Citation Format

Share Document