Wetland meadows of carex acutiformis as a source of bioelectricity of agglomeration atmospheric air pollution and environmental safety of the practices

2021 ◽  
Vol 6 (3) ◽  
pp. 125-129
Author(s):  
Iryna Rusyn ◽  
◽  
Vasyl Dyachok ◽  

The article presents the assessment of bioelectroproductivity of wetland sedge ecosystems of Carex acutiformis in situ. It was found that it is possible to obtain a bioelectric potential at the level of 864.2-1114.8 mV, depending on external conditions using a pair of electrodes graphite/zinc-galvanized steel and graphite/aluminum. The increase in soil moisture had a positive effect on bioelectric potential parameters. Widespread in Polissya biotopes of sedge have prospects as sources of green plant-microbial energy.

Author(s):  
O. Klepikov ◽  
S. Eprintsev ◽  
S. Shekoyan

Data of the Federal Information Fund for Social Hygiene Monitoring conducted on the basis of the Federal Center for Hygiene and Epidemiology of Rospotrebnadzor have been analyzed to assess environmental risks, as well as to develop environmental safety system as a factor for sustainable development of the territory in the regions of the Russian Federation. Atmospheric air pollution in Russian regions was evaluated by content of priority pollutants. Ranking of Russian regions according to the quality of drinking water supply was carried out. The possibility of using Federal Information Fund for Social Hygiene Monitoring as an integral part of the model for optimizing the social and environmental conditions of populated areas is estimated.


2020 ◽  
Vol 59 (1) ◽  
pp. 506-513
Author(s):  
Denis A. Aksenov ◽  
Georgiy I. Raab ◽  
Rashid N. Asfandiyarov ◽  
Vladimir I. Semenov ◽  
Lev Sh. Shuster

AbstractAn increase in the service life of electrical products from copper and its alloys is directly related to an increase in the wear resistance of materials. Structural refinement and alloying with cadmium are known to have a positive effect on the strength characteristics and wear resistance of copper, which makes it possible, with a Cd content of 1% by weight, to increase the wear resistance of copper several times, but cadmium is considered an environmentally unsafe element. In this regard, the paper presents the results of studies of a widely used Cu-Cr-Zr alloy system in the ultrafine-grained (UFG) state, micro-alloyed with cadmium (0.2%, weight), in order to improve physical, mechanical, and operational properties, as well as environmental safety. Severe plastic deformation, providing structure refinement to ~150 nm, and microalloying with cadmium of a Cu-Cr-Zr system alloy, after a complete processing cycle, provides a tensile strength of 570±10 MPa and 67% electrical conductivity. At the same time, the abrasion resistance increases by 12 and 35% relative to the industrial systems Cu-Cd and Cu-Cr-Zr, respectively. The obtained characteristics are very promising for improving the operational properties of continuous welding tips, collector plates, and contact wires operating under conditions of intense wear.


Author(s):  
V.А. Grushnikov

Effective protection of the environment is largely determined by the perfection of drives for various types of automobile wheeled vehicles, which are responsible for the emission of harmful substances into the atmospheric air and noise emission. These aspects of environmental safety are among the most important areas of research and development for specialists in the field of automotive innovation. Keywords automobile rolling stock; structures; technologies; units; research; design; manufacture; operation; environmental safety


2021 ◽  
Vol 02 ◽  
Author(s):  
Larissa Bach-Toledo ◽  
Patricio G. Peralta-Zamora ◽  
Liziê Daniela Tentler Prola

Background: The demand for photocatalytic processes assisted by solar radiation has stimulated the upgrading of established systems, as the semiconductor modification with noble metals. Objective: the synthesis, characterization, and photocatalytic activity evaluation of the Ag-TiO2, against sulfamethoxazole molecule, and investigate the significance of the plasmonic phenomenon in Visible (450 - 1000nm) and UV-Vis (315-800 nm) radiation. Methods: Different nanocomposites Ag/TiO2 ratios were synthesized by the deposition of Ag nanoparticles on the TiO2 surface by in-situ photoreduction, and then calcinated at 400°C for 2 hr. The chemical-physical properties of the materials were examined by UV-Vis Diffuse Reflectance (UV-Vis DRS) Scanning Electronic Microscopy (SEM), Transmission Electronic Microscopy (TEM), X-Ray Energy Dispersive Spectroscopy (EDS). The experiments were conducted in a cooled photochemical reactor irradiated by halogen lamp (250W). The degradation of Sulfamethoxazole was monitored by HPLC-DAD. Results: Although the prepared photocatalysts show an intense plasmonic band centered at 500 nm, no photocatalytic activity was observed in the process assisted by artificial visible radiation ( ≥ 450 nm). In processes assisted by artificial UV-Vis radiation, the photolysis rate of the model compound (sulfamethoxazole) was higher than the photocatalytic rate, and in the absence of UV radiation, all the reactions were inhibited. The positive effect of the presence of silver nanoparticles onto the TiO2 surface was only evidenced in studies involving solar radiation. Conclusion: The results suggest the need for a balance between UV and Vis radiation to activate the nanocomposite and perform the sulfamethoxazole degradation.


2001 ◽  
Vol 34 (6) ◽  
pp. 767-770 ◽  
Author(s):  
C.H.M. Correa ◽  
A.L.G. Mattos ◽  
A.N. Ferrari

1994 ◽  
Vol 266 (3) ◽  
pp. H1202-H1213 ◽  
Author(s):  
P. P. De Tombe ◽  
W. C. Little

Recent studies in isolated and in vivo canine hearts have suggested that the left ventricular end-systolic pressure (LVPes) of ejecting beats is the net result of a balance between positive and negative effects of ejection. At present, it is unknown whether these ejection effects are merely a ventricular chamber property or represent a fundamental myocardial property. Accordingly, we examined the effects of ejection in eight isolated rat cardiac trabeculae at the sarcomere level. We approximated in situ sarcomere shortening patterns using an iterative computer loading system. Six isovolumic contractions were compared with four ejecting contractions. The superfusing solution contained either 0.7 mM Ca2+ or 0.65 mM Sr2+ plus 0.15 mM Ca2+. With Ca2+, simulated LVPes ("LVP"es) of ejecting contractions was significantly lower than isovolumic "LVP"es (-5.3 +/- 5.6%), whereas with Sr2+, ejecting "LVP"es was significantly higher than isovolumic "LVP"es (+4.5 +/- 7.5%). Contraction duration and time to end systole were markedly prolonged in ejecting vs. isovolumic contractions with either Ca2+ or Sr2+. As a consequence, comparison of simulated LVP between ejecting and isovolumic beats throughout the contraction, i.e., at the same simulated LVV and time, revealed only a positive effect of ejection with either Ca2+ (+18.8 +/- 5.5%) or Sr2+ (+23.4 +/-9.3%). We conclude that both positive and negative effects of ejection are basic myocardial properties.


2018 ◽  
Vol 875 ◽  
pp. 19-23
Author(s):  
Ricardo M. Souto ◽  
Dániel Filotás ◽  
Bibiana M. Fernández-Pérez ◽  
Lívia Nagy ◽  
Géza Nagy

The scanning electrochemical microscope (SECM) offers a highly sensitive route to evaluate degradation reactions and protection methods with chemical selectivity by using ion-selective microelectrodes as tips, thus operating SECM potentiometrically. Spatially resolved imaging of electrochemical reactivity related to each component of the investigated material can thus be effectively monitored selectively both in situ and in real time. The applicability of this method has been illustrated using a practical example of a metal-coating system, consisting in the exposure of cut edges of coil-coated galvanized steel to aqueous saline environment. In this contribution, localized pH and zinc(II) ion distributions originated around cut edges of coil coated steel immersed in 1 mM NaCl solution are shown.


RSC Advances ◽  
2020 ◽  
Vol 10 (67) ◽  
pp. 40725-40738
Author(s):  
Bozhi Li ◽  
Reza Tayebee ◽  
Effat Esmaeili ◽  
Mina S. Namaghi ◽  
Behrooz Maleki

WO3ZnO/Fe3O4 is used as a magnetic photocatalyst in the preparation of 2-substituted benzimidazoles in EtOH at RT. The key feature is the in situ photocatalytic oxidation of benzyl alcohols to benzaldehydes under atmospheric air in the absence of further oxidant.


Author(s):  
Francisco J. Díaz ◽  
Sandra V. Pereda ◽  
Alejandro H. Buschmann

In many coastal areas substrate is the limiting resource for benthic organisms. Some sessile species can be used as secondary substrate, reducing competition and increasing coexistence. In southern Chile, annual populations of Macrocystis pyrifera recruit and grow on the shells of Crepipatella fecunda. This study describes ecological interactions between the kelp and the slipper limpet over an annual cycle. The degree of kelp overgrowth was established by collecting sporophytes and through in situ submarine photography over a 10 month period (starting when kelp recruits became visible and ending when sporophytes were no longer present). Changes in the biochemical composition of the limpet tissue were also recorded by chemical analyses, to evaluate the potential effects (positive/neutral/negative) of kelp on C. fecunda nutritional condition. The results indicate that both species coexist, although kelp overgrowth may cause a decrease in carbohydrates in C. fecunda tissues, restricted to the period when the kelp forest reaches its maximum biomass. Individually, the short duration of the maximum overgrowth period and the size reached by C. fecunda females (up to 65 mm shell length) may enable rapid limpet recovery, avoiding competitive exclusion. On a population level, the M. pyrifera annual cycle generates the needed ‘break’ for C. fecunda populations, reducing the effects of kelp overgrowth. Thus, in the view of the neutral effect of kelp overgrowth, together with the positive effect of C. fecunda on M. pyrifera recruitment described somewhere else, this ecological interaction can be categorized as commensalism.


2018 ◽  
Vol 1 (3) ◽  
pp. 279-288
Author(s):  
Oksana Mandrazhy ◽  
Alona Lemekhova ◽  
Tetiana Likhnovska

The article considers the right of everyone to a safe environment for life and health. The right of everyone to a safe environment for life and health and to the compensation for the damage caused by the violation of this right. This right is preceded by the duty of the state to ensure environmental safety and maintain environmental balance on the territory of Ukraine, as stipulated in article 16 of the Constitution of Ukraine. The purpose of this article is to present current research of authors regarding the observance of the Constitution of Ukraine with regard to the protection of natural assets in Ukraine.


Sign in / Sign up

Export Citation Format

Share Document