scholarly journals NUMERICAL ANALYSIS FOR COMPRESSED CERAMIC HOLLOW BRICK MASONRY COLUMNS STRENGTHENED WITH GFRP MESHES

2021 ◽  
Vol 2021 (2) ◽  
pp. 76-81
Author(s):  
Serhiy Bula ◽  
◽  
Mariana Kholod ◽  
Nazarii Viter ◽  
◽  
...  

This article presents the analysis of obtained experimental results for the study of masonry columns which have been strengthened by GFRP confinement after high-level axial compression loading. Ceramic hollow-brick middle-scale models were investigated regarding assumed testing program. The basics of experimental studies were briefly described in the paper. Theoretical study was performed to compare experimental and theoretical values. Such numerical analysis helps to evaluate the possibility to use the existing standard`s approaches for calculating bearing capacity of strengthened by GFRP jacketing ceramic brick columns which were subjected to the high axial loading. Theoretical results areratheraligned with experimental data. Some conclusions were provided in terms of usability the analytical model provided standards and other scientists. Addressing to the further investigation and research problems were performed.

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Khaled Touafek ◽  
Abdelkrim Khelifa ◽  
Lyes Boutina ◽  
Ismail Tabet ◽  
Salim Haddad

This work undertakes both simulation and experimental studies of a new design of a photovoltaic thermal solar air collector (PV/T). In order to improve the thermal and electrical performances for a specific application, the analytical expressions for thermal parameters and efficiency are derived by developing an energy balance equation for each component of the PV/T air collector. This type of hybrid collector can be applied in the facades of buildings. The electricity and heat produced will satisfy the energy needs of the buildings, while ensuring an aesthetic view of its facades. A typical prototype was designed, constructed, and implemented in the applied research unit on renewable energies in Ghardaia, situated in the south of Algeria. This region has semiarid characteristics. Results obtained by an experimental test are presented and compared to those predicted through simulation. Results include the temperature of each component of the PV/T collector and air temperature at the inlet and outlet of the channel. It has been found that the theoretical results predicted by the developed mathematical model, for instance, outlet temperature, agree with those found through experimental work.


1980 ◽  
Vol 102 (1) ◽  
pp. 94-101 ◽  
Author(s):  
S. Okabe ◽  
Y. Yokoyama

This paper treats the motion of a particle on a vibratory feeder whose track has directional characteristic in repulsive motion, for examples, obliquely bristled track, obliquely sliced track and so on. Under some assumptions, the practical equation for predicting the mean conveying velocity is shown and the relations between conveying condition and the mean conveying velocity are clarified theoretically. These relations are shown in various diagrams. Referring these diagrams, the optimum conveying conditions are discussed also. The theoretical results show that the mean conveying velocity is considerably larger than that of the ordinary feeder. The theoretical results are confirmed by experimental studies.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Eduard Amromin

According to several known experiments, an increase of the incoming flow air content can increase the hydrofoil lift coefficient. The presented theoretical study shows that such increase is associated with the decrease of the fluid density at the cavity surface. This decrease is caused by entrainment of air bubbles to the cavity from the surrounding flow. The theoretical results based on such explanation are in a good agreement with the earlier published experimental data for NACA0015.


2014 ◽  
Vol 8 (1) ◽  
pp. 44-48
Author(s):  
Grzegorz Mieczkowski ◽  
Krzysztof Molski

Abstract The increasing application of composite materials in the construction of machines causes strong need for modelling and evaluating their strength. There are many well known hypotheses used for homogeneous materials subjected to monotone and cyclic loading conditions, which have been verified experimentally by various authors. These hypotheses should be verified also for composite materials. This paper provides experimental and theoretical results of such verifications for bimaterial structures with interfacial cracks. Three well known fracture hypotheses of: Griffith, McClintock and Novozhilov were chosen. The theoretical critical load values arising from each hypotheses were compared with the experimental data including uni and multi-axial loading conditions. All tests were carried out with using specially prepared specimens of steel and PMMA.


2021 ◽  
Author(s):  
Livia Casali ◽  
David Eldon ◽  
Adam G McLean ◽  
Tom H Osborne ◽  
Anthony W Leonard ◽  
...  

Abstract A comparative study of nitrogen versus neon has been carried out to analyze the impact of the two radiative species on power dissipation, SOL impurity distribution, divertor and pedestal characteristics. The experimental results show that N remains compressed in the divertor, thereby providing high radiative losses without affecting the pedestal profiles and displacing carbon as dominant radiator. Neon, instead, radiates more upstream than N thus reducing the power flux through the separatrix leading to a reduced ELM frequency and compression in the divertor. A significant amount of neon is measured in the plasma core leading to a steeper density gradient. The different behaviour between the two impurities is confirmed by SOLPS-ITER modelling which for the first time at DIII-D includes multiple impurity species and a treatment of full drifts, currents and neutral-neutral collisions. The impurity transport in the SOL is studied in terms of the parallel momentum balance showing that N is mostly retained in the divertor whereas Ne leaks out consistent with its higher ionization potential and longer mean free path. This is also in agreement with the enrichment factor calculations which indicate lower divertor enrichment for neon. The strong ionization source characterizing the SAS divertor causes a reversal of the main ions and impurity flows. The flow reversal together with plasma drifts and the effect of the thermal force contribute significantly in the shift of the impurity stagnation point affecting impurity leakage. This work provides a demonstration of the impurity leakage mechanism in a closed divertor structure and the consequent impact on pedestal. Since carbon is an intrinsic radiator at DIII-D, in this paper we have also demonstrated the different role of carbon in the N vs Ne seeded cases both in the experiments and in the numerical modeling. Carbon contributes more when neon seeding is injected compared to when nitrogen is used. Finally, the results highlight the importance of accompanying experimental studies with numerical modelling of plasma flows, drifts and ionization profile to determine the details of the SOL impurity transport as the latter may vary with changes in divertor regime and geometry. In the cases presented here, plasma drifts and flow reversal caused by high level of closure in the slot upper divertor at DIII-D play an important role in the underlined mechanism.


Author(s):  
Benjamin Nicoletta ◽  
John Gales ◽  
Panagiotis Kotsovinos

<p>Recent trends towards performance-based fire designs for complex and critical structures have posed questions about the fire resilience of bridge infrastructure. There are little-to-no code requirements for bridge fire resistance and practitioner guidance on the subject is limited. Research on the fire performance of cable-supported bridge structures is scarce and knowledge gaps persist that inhibit more informed fire protection designs in a variety of bridge types. There have been few numerical or experimental studies that investigate the fire performance of steel stay-cables for use in cable-supported bridges. The thermal response of these members is critical as cable systems are highly dependent on the response of individual members, such as in the case of an anchor cable for example. The study herein examines the thermal response of several varieties of unloaded steel- stay cable during exposure to a non-standard methanol pool fire and the implications for the structural response of a cable-supported bridge. Experimental thermal strain data from fire tests of various stay-cables is used to inform high-level insights for the global response of a cable-supported bridge. Namely, the effects of cable thermal expansion on the overall cable system is approximated.</p>


Author(s):  
J. Espinosa-Garcia ◽  
Jose Carlos Corchado

For the theoretical study of the title reaction, an analytical full-dimensional potential energy surface named PES-2021 was developed for the first time, by fitting high-level explicitly-correlated ab initio data. This...


Author(s):  
Kouadio Valery Bohoussou ◽  
Anoubilé Bénié ◽  
Mamadou Guy-Richard Koné ◽  
N’guessan Yao Silvère Diki ◽  
Kafoumba Bamba ◽  
...  

In this work the formation of vinylphosphines was studied through the hydrophosphination reaction. The study aims to rationalize the stereoselectivity of these compounds using quantum DFT methods. This theoretical study of chemical reactivity was conducted at B3LYP/6-311 + G (d, p) level. Global chemical reactivity descriptors, stationary point energies and activation barriers were examined to foretell the relative stability of the stereoisomers formed. The various results obtained have revealed that the addition of arylphosphine to dihalogenoacetylene is stereospecific. The Trans form of vinylphosphines is more stable than the Cis form, when the substituent on phosphorus generates less or no π-conjugations. On the other hand, the Cis isomer is predominant when the aryl radical favors more π-conjugations. The theoretical results obtained are in agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document