scholarly journals Calculation model for the evaluation of tired defect development in the freight wagon side frame

2021 ◽  
Vol 3 (2) ◽  
pp. 15-20
Author(s):  
D. V. Rudavsʹkyy ◽  
◽  
M. S. Shefer ◽  
Yu. I. Kanyuk ◽  
Z. Ya. Shpak ◽  
...  

The reliability and safe operation of mechanical elements of rail transport is an important and relevant scientific and technical issue since high-loaded units and elements of its chassis are exposed to prolonged operation and their failure can lead to damage with catastrophic consequences. To prevent the possible failure of such objects, there is a necessity for a reliable estimation of their residual life. Among the cast parts of the freight car trolley, the side frames are one of the most loaded elements, which take on dynamic loads that cause vibrations of the unsprung parts of the freight car. The side frame of the 18-100 trolley, as a typical representative of a number of trolleys of freight cars, does not have a sufficient margin of resistance to fatigue and survivability, so it is sensitive to some deviations and defects (different wall thickness, sinks, and pores, residual stresses) that are detected during the operation process. Based on the energy approach of the mechanics of materials fatigue failure, the calculation models for estimating the dynamics of the development of crack-like defects under the action of operational load are developed in this work. The calculation models constructed using modern information technologies, and the software developed for their numerical implementation allow predicting the impact of irregular cyclic loading and complex stress on the growth of surface fatigue crack in the side frame of the carriage, which significantly brings the problem closer to real operating conditions. Numerical calculations were performed using a computer program of our own development in the Python programming language. At the first stage of the program functioning the spectrum of amplitudes of irregular cyclic loading is built, at the second - the program module of numerical solution construction for systems of usual differential equations of the proposed mathematical model of fatigue defect development is started. Calculations of the fatigue crack growth dynamics taking into account the action of shear stresses in the section with the crack of the side frame showed a slight effect of shear stresses on the residual durability of the frame. It is demonstrated that the dynamics of surface crack development significantly depend on its initial geometry. The proposed calculation method for determining the initial shape of the surface crack with a minimum period to critical growth can be effectively used to predict the residual durability during the technical diagnosis of the running gear parts of railway rolling stock. Keywords: wagon side frame; fatigue crack; probability distribution function; load amplitude spectrum; numerical method.

1993 ◽  
Vol 115 (1) ◽  
pp. 141-147 ◽  
Author(s):  
H. Fan ◽  
L. M. Keer ◽  
W. Cheng ◽  
H. S. Cheng

Based on a semi-empirical derivation of the Paris fatigue law, the fatigue crack length a is related to the yield limit or flow stress, which ultimately is related to the hardness of the material. The analysis considers together the cyclic loading, which tends to increase the surface crack length, and the wear, which tends to decrease the crack length at the surface, and shows that under certain conditions a stable crack length may be developed. Experiments conducted on two test groups ((i) Rc = 58.5 and (ii) Rc = 62.7) tend to support the present analysis.


Author(s):  
David Samet ◽  
Abhishek Kwatra ◽  
Suresh K. Sitaraman

As the microelectronics industry continues to advance the boundaries of size and performance, focus on the impact of systems packaging has risen to the forefront of design and material considerations. As interfaces are often constructed of multiple heterogeneous layers, interfacial delamination is an important failure mechanism to consider in microelectronic packaging. This failure is due to, among other factors, the stresses arising from high mismatches in coefficient of thermal expansion (CTE). Most work to date has focused on interfacial crack propagation under monotonic loading that is incurred during fabrication steps such as deposition or curing which occur at elevated temperatures and subsequent cooling to room temperature. This is an important design consideration but it is not sufficient as the operational life of these devices involve high numbers of heating and cooling cycles which result in crack propagation under fatigue loading. As such the study of fatigue effects on these interfaces is paramount to improving the lifetime of microelectronic devices as the field pushes towards both thinner and wider packages. One such exploration, which is the subject of this work, is to determine the interface incremental crack growth rate as it relates to cyclic loading. In this work, double cantilever beam (DCB) tests are performed at various stress ratios on samples with epoxy mold compound (EMC) atop a copper leadframe. For these tests, force versus displacement curves will be obtained. Given the small dimensions of the interfaces in question, it is desirable to develop a test methodology that does not require in-situ measurement of crack length. Thus, in these tests the compliance of the samples is determined from the force versus displacement curves and used to infer the progress of the crack through an indirect approach. The advantage of this method is that it does not require the observational measurement of the crack length potentially allowing crack monitoring absent any optical or imaging methods. Using the determined crack propagation rate with fatigue cycle under various loading conditions, a generalized fatigue crack propagation model will be developed for mold compound and copper interface, and such a model can be employed to assess packaging reliability in operating conditions.


Author(s):  
Ning Yang ◽  
Steven Deutsch ◽  
Eric G. Paterson ◽  
Keefe B. Manning

Ventricular assist devices (VADs) have been used for years in adult patients with end-stage heart failure, during bridge-to-transplant, and they have recently shown promise in aiding in myocardial recovery [1]. While the fluid mechanics within VADs has been studied extensively [2], an area which must be more adequately addressed is the outflow cannula attached as an end-to-side anastomosis to the aorta. This attachment may lead to unnaturally high and low shear stresses, turbulence, flow separation, and stagnant flows. As a result, platelet activation and thrombus formation may occur. May-Newman et al. [3] developed a laminar, continuous, computational fluid dynamics (CFD) model to study how different outflow cannula anastomoses affect flow patterns in an adult aortic model. Turbulent flows, however, were not considered. The effects of the anastomosis on the flows in the secondary vessels were neglected as well. There is a lack of detailed description of the flow field across the cannulated adult aorta based on different VAD outflow cannula configurations and operating conditions. As a result, we have developed a comprehensive model to simulate turbulent blood flow in three-dimensional models of the cannulated adult aorta under continuous flow conditions and to study the impact of the secondary vessels on the aortic arch.


2005 ◽  
Vol 33 (3) ◽  
pp. 156-178 ◽  
Author(s):  
T. J. LaClair ◽  
C. Zarak

Abstract Operating temperature is critical to the endurance life of a tire. Fundamental differences between operations of a tire on a flat surface, as experienced in normal highway use, and on a cylindrical test drum may result in a substantially higher tire temperature in the latter case. Nonetheless, cylindrical road wheels are widely used in the industry for tire endurance testing. This paper discusses the important effects of surface curvature on truck tire endurance testing and highlights the impact that curvature has on tire operating temperature. Temperature measurements made during testing on flat and curved surfaces under a range of load, pressure and speed conditions are presented. New tires and re-treaded tires of the same casing construction were evaluated to determine the effect that the tread rubber and pattern have on operating temperatures on the flat and curved test surfaces. The results of this study are used to suggest conditions on a road wheel that provide highway-equivalent operating conditions for truck tire endurance testing.


2019 ◽  
pp. 43-48
Author(s):  
Ben Nengjun ◽  
Zhou Pengfei ◽  
Oleksandr Labartkava ◽  
Mykhailo Samokhin

This work involves an analysis of high-chromium high-temperature deformable wieldable nickel alloys for use in GTE repair assemblies. It is shown that the alloys EP868 (VZh98) and Haynes 230 can be used in welded assemblies with an operating temperature of 800-1100 °C. The alloys Nimonic 81, Nimonic 91, IN 935, IN 939, and Nicrotan 2100 GT also have a high potential for use in welded assemblies. They are characterized by a combination of good weldability, high-temperature strength, and resistance to scaling. There have been conducted studies on high-temperature salt corrosion of model nickel alloys. They allowed establishing the patterns of the impact of base metal alloying with chromium, aluminum, titanium, cobalt, tungsten, molybdenum, niobium, tantalum and rare earth metals on the critical temperature of the start of salt corrosion Tcor and the alloy mass loss. It has been established that alloys with a moderate concentration (13-16%) of chromium can possess satisfactory hightemperature corrosion resistance (HTC resistance) under the operating conditions of ship GTE. The HTC resistance of CrAl-Ti alloys improves upon reaching the ratio Ti/Al ˃ 1. Meanwhile, the ratio Ti/Al ˂ 1 promotes the formation of corrosion products with low protective properties. The positive effect of tantalum on the HTC resistance of alloys is manifested at higher test temperatures than that of titanium, and the total content of molybdenum and tungsten in alloys is limited by the condition 8Mo2 – 2W2 = 89. The presence of refractory elements stabilizes the strengthening phase and prevents formation of the ɳ-phase. However, their excess promotes formation of the embrittling topologically close packed (TCP) phases and boundary carbides of an unfavorable morphology. Based on the studies of the HTC resistance, there has been identified a class of model high-temperature corrosionresistant nickel alloys with a moderate or high chromium content (30%), Ti/Al ˃ 1, and a balanced content of refractory and rare-earth elements.


2014 ◽  
pp. 298-301 ◽  
Author(s):  
Arnaud Petit

Bois-Rouge factory, an 8000 t/d cane Reunionese sugarcane mill, has fully equipped its filtration station with vacuum belt press filters since 2010, the first one being installed in 2009. The present study deals with this 3-year experience and discusses operating conditions, electricity consumption, performance and optimisation. The comparison with the more classical rotary drum vacuum filter station of Le Gol sugar mill highlights advantages of vacuum belt press filters: high filtration efficiency, low filter cake mass and sucrose content, low total solids content in filtrate and low power consumption. However, this technology needs a mud conditioning step and requires a large amount of water to improve mud quality, mixing of flocculant and washing of filter belts. The impact on the energy balance of the sugar mill is significant. At Bois-Rouge mill, studies are underway to reduce the water consumption by recycling low d.s. filtrate and by dry cleaning the filter belts.


Author(s):  
Matt Bristow

A new analytical method is presented to determine the effects of cyclic loading on laterally loaded piles. The method uses a new numerical procedure to quantify the effects of the cyclic loading at each soil depth and convert that to a set of cyclic p-y modifiers. The reduced foundation stiffness associated with the cyclic loading can be determined, including the residual static capacity and an estimate of the accumulated displacement. The new method introduces the concept of cyclic degradation damage, which is defined as sum of the cyclic degradation that is occurring at each soil depth. Cyclic degradation calculations are based on the shear stresses in the soil. Consequently, anything that causes the shear stresses to change (e.g. pile length, pile diameter, applied loading, etc.) will automatically be included in the calculation of cyclic p-y modifiers. The method has been validated by comparing the cyclic p-y curves produced using the new method with established cyclic p-y curves derived from fielding testing. The new method has also been used to investigate what happens to the cyclic p-y modifiers as one moves away from the reference conditions used to determine the established cyclic p-y curves in API RP2A (2000). The new method shows that every application (e.g. combination of cyclic loading, pile properties, and soil characteristics) has its own unique set of cyclic p-y curves, though most p-y curves fit within an upper and lower bound range. Examples are provided for large diameter monopiles.


Author(s):  
И.В. Бачериков ◽  
Б.М. Локштанов

При проектировании открытых и закрытых хранилищ измельченных сыпучих материалов древесных материалов, таких как щепа и опилки, большое значение имеет угол естественного откоса (статический и динамический) этих материалов. В технической литературе приводятся противоречивые сведения о величине этих углов, что приводит к ошибкам при проектировании складов. В справочных данных не учитываются условия, в которых эксплуатируются емкости для хранения сыпучих материалов, свойства и состояние этих сыпучих материалов. В свою очередь, ошибки при проектировании приводят к проблемам (зависание, сводообразование, «затопление» и т. д.) и авариям при эксплуатации бункеров и силосов на производстве. В статье представлены сведения, посвященные влиянию влажности и температуры на угол естественного откоса сыпучих материалов. На основании лабораторных и натурных экспериментов, проведенных с помощью специально разработанных методик и установок, была скорректирована формула для определения углов естественного откоса (статического и динамического) для измельченных древесных материалов в зависимости от их фракционного и породного состава, влажности (абсолютной и относительной) и температуры. При помощи скорректированной формулы можно определить угол естественного откоса древесных сыпучих материалов со среднегеометрическим размером частицы от 0,5 мм до 15 мм (от древесной пыли до технологической щепы) в различных производственных условиях. Статья может быть полезна проектировщикам при расчете угла наклона граней выпускающей воронки бункеров и силосов предприятий лесной отрасли и целлюлозо-бумажной промышленности. In the design of open and closed storage warehouses chopped wood materials for bulk materials such as wood chips and sawdust, great importance has an angle of repose (static and dynamic) of these materials. In the technical literature are conflicting reports about the magnitude of these angles, which leads to errors in the design of warehouses. In the referencesdoes not take into account the conditions under which operated capacities for storage of bulk materials, and properties and condition of the bulk material. The design errors lead to problems (hanging, arching, «flooding», etc.) and accidents in the operation of hoppers and silos at the mills. The article provides information on the impact of humidity and temperature on the angle of repose of granular materials. On the basis of laboratory and field experiments, conducted with the help of specially developed techniques and facilities has been adjusted formula for determining the angle of repose (static and dynamic) for the shredded wood materials depending on their fractional and species composition, humidity (absolute and relative) and temperature. It is possible, by using the corrected formula, to determine the angle of repose of loose wood materials with average particle size of from 0.5 mm to 15 mm (wood dust to pulpchips) in various operating conditions. The article can be helpful to designers in the calculation of the angle of inclination of the funnel faces produces bunkers and silos forest industries and pulp and paper industry.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 461
Author(s):  
Fu Yang ◽  
Zhengkun Huang ◽  
Jun Huang ◽  
Chongde Wu ◽  
Rongqing Zhou ◽  
...  

Ultrafiltration is a promising, environment-friendly alternative to the current physicochemical-based tannery wastewater treatment. In this work, ultrafiltration was employed to treat the tanning wastewater as an upstream process of the Zero Liquid Discharge (ZLD) system in the leather industry. The filtration efficiency and fouling behaviors were analyzed to assess the impact of membrane material and operating conditions (shear rate on the membrane surface and transmembrane pressure). The models of resistance-in-series, fouling propensity, and pore blocking were used to provide a comprehensive analysis of such a process. The results show that the process efficiency is strongly dependent on the operating conditions, while the membranes of either PES or PVDF showed similar filtration performance and fouling behavior. Reversible resistance was the main obstacle for such process. Cake formation was the main pore blocking mechanism during such process, which was independent on the operating conditions and membrane materials. The increase in shear rate significantly increased the steady-state permeation flux, thus, the filtration efficiency was improved, which resulted from both the reduction in reversible resistance and the slow-down of fouling layer accumulate rate. This is the first time that the fouling behaviors of tanning wastewater ultrafiltration were comprehensively evaluated, thus providing crucial guidance for further scientific investigation and industrial application.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4034
Author(s):  
Paolo Iodice ◽  
Massimo Cardone

Among the alternative fuels existing for spark-ignition engines, ethanol is considered worldwide as an important renewable fuel when mixed with pure gasoline because of its favorable physicochemical properties. An in-depth and updated investigation on the issue of CO and HC engine out emissions related to use of ethanol/gasoline fuels in spark-ignition engines is therefore necessary. Starting from our experimental studies on engine out emissions of a last generation spark-ignition engine fueled with ethanol/gasoline fuels, the aim of this new investigation is to offer a complete literature review on the present state of ethanol combustion in last generation spark-ignition engines under real working conditions to clarify the possible change in CO and HC emissions. In the first section of this paper, a comparison between physicochemical properties of ethanol and gasoline is examined to assess the practicability of using ethanol as an alternative fuel for spark-ignition engines and to investigate the effect on engine out emissions and combustion efficiency. In the next section, this article focuses on the impact of ethanol/gasoline fuels on CO and HC formation. Many studies related to combustion characteristics and exhaust emissions in spark-ignition engines fueled with ethanol/gasoline fuels are thus discussed in detail. Most of these experimental investigations conclude that the addition of ethanol with gasoline fuel mixtures can really decrease the CO and HC exhaust emissions of last generation spark-ignition engines in several operating conditions.


Sign in / Sign up

Export Citation Format

Share Document