scholarly journals The Effect Catalyst Natural Zeolite of Lampung On The Synthesis Of α-Terpineol From Turpentine

INSIST ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 89
Author(s):  
Herti Utama ◽  
Simparmin Br. Ginting ◽  
Dwi Derti Sulistiowati ◽  
Ria Putri Hermiyati

The major component of turpentine is α-pinene. Alpha pinene can be hydrated using an acid catalyst to produce α-terpineol. It can be used as a perfume, anti -insect, and disinfectants. The using of heterogeneous catalysts as natural zeolite can be a new alternative to replacehomogeneous catalysts. The purpose of this study was to determine the effect of zeolite catalysts and the reaction time which resulting the highest conversion on hydration reactions of turpentine to α-terpineol. Parameters were the effect of catalyst concentration of (5%, 10% and 15%) and the reaction time (60 minutes, 120 minutes and 180 minutes). The turpentine, aquadest and isopropyl alcohol were reacted in the three neck flask at the temperature of 70°C. The result of this study showed that the best condition the hydration of turpentine α-terpineol was achieced at 15% catalyst concentration and the reaction time of 180 minutes. The convertion was obtained to be 4.875%.Keywords— Turpentine, Hydration, Alpha terpineol, Catalys,Natural Zeolite.

2017 ◽  
Vol 6 (1) ◽  
pp. 12-18
Author(s):  
Taslim ◽  
Sri Zahrani Dwi Mauliyah Parinduri ◽  
Putri Retno Wahyu Ningsih

Biodiesel was usually produced from transesterification using alchohol. In this research rice bran oil was used as feedstock and methanol was used as reagent. The transesterification of rice bran oil had studied using KOH/natural zeolite as a solid heterogeneous catalyst. The objective of this study was to discover the effectivess of using natural zeolite modified by KOH as heterogeneous catalysts in the production of biodiesel from rice bran oil (RBO). KOH/natural zeolite catalyst was prepared by modification through impregnation method which was conducted on various KOH concentration (75 gram/100 ml – 175 gram/100 ml).  Transesterification reaction was conducted at 60 ºC, 500 rpm, and various amount of catalyst (2-4%), reaction time (1,5-3,5 hour) and molar ratio alcohol/oil (8:1-12:1). The highest yield of biodiesel was 98,71%, which was obtained by using 2% catalyst, reaction time 2 hour, molar ratio alcohol/oil 10:1. Natural zeolite as heterogeneous catalyst which modified by KOH could get the higher yield biodiesel on transesterification.


2020 ◽  
Vol 7 (1) ◽  
pp. 191592
Author(s):  
Shehu-Ibrahim Akinfalabi ◽  
Umer Rashid ◽  
Imededdine Arbi Nehdi ◽  
Thomas Shean Yaw Choong ◽  
Hassen Mohamed Sbihi ◽  
...  

The optimum conditions to produce palm fatty acid distillate (PFAD)-derived-methyl esters via esterification have been demonstrated with the aid of the response surface methodology (RSM) with central composite rotatable design in the presence of heterogeneous acid catalyst. The effect of four reaction variables, reaction time (30–110 min), reaction temperature (30–70°C), catalyst concentration (1–3 wt.%) and methanol : PFAD molar ratio (3 : 1–11 : 1), were investigated. The reaction time had the most influence on the yield response, while the interaction between the reaction time and the catalyst concentration, with an F -value of 95.61, contributed the most to the esterification reaction. The model had an R 2 -value of 0.9855, suggesting a fit model, which gave a maximum yield of 95%. The fuel properties of produced PFAD methyl ester were appraised based on the acid value, iodine value, cloud and pour points, flash point, kinematic viscosity, density, ash and water contents and were compared with biodiesel EN 14214 and ASTM D-6751 standard limits. The PFAD methyl ester was further blended with petro-diesel from B0, B3, B5, B10, B20 and B100, on a volumetric basis. The blends were characterized by TGA, DTG and FTIR. With an acid value of 0.42 (mg KOH g −1 ), iodine value of 63 (g.I 2 /100 g), kinematic viscosity of 4.31 (mm 2 s −1 ), the PFAD methyl ester has shown good fuel potential, as all of its fuel properties were within the permissible international standards for biodiesel.


2018 ◽  
Vol 156 ◽  
pp. 06005
Author(s):  
Lailatul Qadariyah ◽  
Mahfud Renova Panjaitan ◽  
Fatkhulloh Mujaddid ◽  
Ummu Kalsum

Microalga is one of the potential feedstocks in the manufacture of biodiesel because it contains high oil content. In this study, Chlorella sp. was selected because its high oil content about 28-32% of oil (based on its dry weight) and its presence is abundant among other green algae. In situ transesterification was carried out in round neck flask under microwave irradiation. Microwave irradiation can facilitate the in situ transesterification by extracted the lipid of microalga and simultaneous convert to FAME. The purposes of this study are to investigate the effect of acid catalyst concentration, microwave power, reaction time and the addition of co-solvent (n-hexane) on the yield of biodiesel, to get optimum operating conditions and to know the fatty acid compounds of biodiesel from Chlorella sp. The results of oil extraction and biodiesel were analyzed by GC-MS analysis. Based on the experiment, the yield of microalga oil was 11.37%. The optimum yield of biodiesel by in-situ transesterification was 75.68%. It was obtained at the microwave power of 450 watts, the reaction time of 60 minutes, an acid catalyst concentration of 0,2M of H2SO4, and the co-solvent addition of 10 ml.


2018 ◽  
Vol 1 (1) ◽  
pp. 38-43
Author(s):  
Mila Nurmila ◽  
Tatang Shabur Julianto ◽  
Dwiarso Rubiyanto

The study of addition H2O to the alpha-pinene conversion into terpineol using H2SO4 catalyst has been carried out. The conversion process carried out using a hydration reaction for 4 hours with the variation of the number of water. The mole ratio of alpha-pinene to water l:5, 1:10,1:15, 1:20,1:25. While the H2SO4 as catalyst concentration has equated to the concentration of alpha-pinene for all conditions. The mixture which are alpha-pinene, with varying amounts of water, sulfuric acid catalyst and a fixed cancentration equivalent to the concentration of alpha-pinene and acetone as media refluxed at a temperature of 80-85°C during 4 hours. Hydration products were analyzed using GC-MS ond GC instrument.The results showed that the ratio of alpha-pinene reaction conditions: water l:10, alpha pinene converting as much as 30,29% with selectivity terpineol products as much as 30,395%. 


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1402
Author(s):  
Agnieszka Wróblewska ◽  
Marcin Kujbida ◽  
Grzegorz Lewandowski ◽  
Adrianna Kamińska ◽  
Zvi C. Koren ◽  
...  

This work presents the results of our research on the epoxidation of 1,5,9-cyclododecatriene (CDT) with hydrogen peroxide over the Ti-MCM-41 catalyst. The influence of the following parameters on the course of the process was investigated: temperature, CDT:H2O2 molar ratio, solvent composition and its type, and catalyst content. The highest selectivity of CDT transformation to 1,2-epoxy-5,9-cyclododecadiene (ECDD)—approximately 100 mol%, the highest yet reported—was obtained at the CDT conversion of 13 mol% and with the following parameter values: a catalyst content of 5 wt%; a molar ratio of CDT:H2O2 = 2; isopropyl alcohol (i-PrOH) as the solvent, with a composition of 80 wt% in the reaction mixture; a temperature of 80 °C; and a reaction time of 240 min. The highest conversion of CDT (37 mol%) was obtained at the ECDD selectivity of 56 mol% and using the following process parameters: a catalyst content of 5 wt%; a molar ratio of CDT:H2O2 = 0.5; i-PrOH used as the solvent, with solvent composition of 80 wt%; a temperature of 80 °C; and a reaction time of 60 min. It should be emphasized that the CDT conversion obtained in the current study is higher (by 9 mol%) than that described in the literature on heterogeneous catalysts.


Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.


Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 437 ◽  
Author(s):  
Ralentri Pertiwi ◽  
Ryan Oozeerally ◽  
David L. Burnett ◽  
Thomas W. Chamberlain ◽  
Nikolay Cherkasov ◽  
...  

The metal–organic framework MIL-101(Cr) is known as a solid–acid catalyst for the solution conversion of biomass-derived glucose to 5-hydroxymethyl furfural (5-HMF). We study the substitution of Cr3+ by Fe3+ and Sc3+ in the MIL-101 structure in order to prepare more environmentally benign catalysts. MIL-101(Fe) can be prepared, and the inclusion of Sc is possible at low levels (10% of Fe replaced). On extended synthesis times the polymorphic MIL-88B structure instead forms.Increasing the amount of Sc also only yields MIL-88B, even at short crystallisation times. The MIL-88B structure is unstable under hydrothermal conditions, but in dimethylsulfoxide solvent, it provides 5-HMF from glucose as the major product. The optimum material is a bimetallic (Fe,Sc) form of MIL-88B, which provides ~70% conversion of glucose with 35% selectivity towards 5-HMF after 3 hours at 140 °C: this offers high conversion compared to other heterogeneous catalysts reported in the same solvent.


Synthesis ◽  
2021 ◽  
Author(s):  
Thomas De Dios Miguel ◽  
Dan Louvel ◽  
Killian Onida ◽  
Adeline Lavoignat ◽  
Stephane Picot ◽  
...  

The peracetalisation of a β-hydroxy hydroperoxide derived from methyl oleate was studied using benzaldehyde as a model substrate to give the corresponding fatty 1,2,4-trioxane. The desired product was obtained as a mixture of regioisomers but only one diastereoisomer of each was formed. The nature of the acid catalyst was studied and both para-toluene sulfonic acid (PTSA) and Amberlyst A35 (A35) were found to be efficient homogeneous and heterogeneous catalysts, respectively. The nature of the solvent was also investigated and ethereal solvents such as 2-methyltetrahydrofuran (2-MeTHF), methyl tert-butyl ether (MTBE) and cyclopentyl methyl ether (CPME) gave the best NMR yield (85%) for the preparation of the fatty trioxane. The optimized conditions were applied to a range of aromatic and aliphatic aldehydes and the corresponding 1,2,4-trioxanes were isolated with 30-91% yields (21 examples). The antimalarial activity of 3 trioxanes was studied against Plasmodium falciparum, however, no significant activity was detected (IC50 > 1600 nM).


2014 ◽  
Vol 554 ◽  
pp. 500-504 ◽  
Author(s):  
Farid Nasir Ani ◽  
Ahmed Bakheit Elhameed

This paper investigated the three critical reaction parameters including catalyst concentration, microwave exit power and reaction time for the transesterification process of jatropha curcas oil using microwave irradiation. The work is an attempt to reduce the production cost of biodiesel. Similar quantities of methanol to oil molar ratio 6:1 and calcium oxide as a heterogeneous catalyst were used. The results showed that the best yield percentage 96% was obtained using 300W microwave exit power, 8 %wt CaO and 7 min. The methyl ester FAME obtained was within the standard of biodiesel fuel.


Sign in / Sign up

Export Citation Format

Share Document