scholarly journals Analisis Penurunan Muka Tanah dengan Small Baseline Subset Differential SAR Interferograms di Kota Bandar Lampung

2020 ◽  
Vol 5 (2) ◽  
pp. 30-43
Author(s):  
Bagas Setyadi ◽  
Rustadi Rustadi

Bandar Lampung is one of the cities in Indonesia, which has a potential to land subsidence due to the extraction of ground water, mining, land conversion, and geological conditions. For that reason, carried out the study of land subsidence with SBAS technique, due to the very lack of information about the symptoms of land subsidence in Bandar Lampung. In this study, 15 SAR data in 2006 to 2011 used and then combined to produce 40 interferogram then inverted resulting in a time-series deformation and deformation speed average. Velocity precision obtained with SBAS technique is highly dependent on the type of land cover in the study area, but it is known that the average of land subsidence in Bandar Lampung is about 0.06 mm/year, which is considered quite stable due to the geological structure that does not allow for the occurrence of massive consolidation process. Several areas have indications of subsidence 5 mm/year are suspected to be caused by tectonic activity and human activity (industrial, mining, extraction of groundwater, and land conversion), which then has implications for structural damage to buildings, flooding in coastal areas, and landslides in hilly areas.

2020 ◽  
Vol 12 (1) ◽  
pp. 1094-1104
Author(s):  
Nima Dastanboo ◽  
Xiao-Qing Li ◽  
Hamed Gharibdoost

AbstractIn deep tunnels with hydro-geological conditions, it is paramount to investigate the geological structure of the region before excavating a tunnel; otherwise, unanticipated accidents may cause serious damage and delay the project. The purpose of this study is to investigate the geological properties ahead of a tunnel face using electrical resistivity tomography (ERT) and tunnel seismic prediction (TSP) methods. During construction of the Nosoud Tunnel located in western Iran, ERT and TSP 303 methods were employed to predict geological conditions ahead of the tunnel face. In this article, the results of applying these methods are discussed. In this case, we have compared the results of the ERT method with those of the TSP 303 method. This work utilizes seismic methods and electrical tomography as two geophysical techniques are able to detect rock properties ahead of a tunnel face. This study shows that although the results of these two methods are in good agreement with each other, the results of TSP 303 are more accurate and higher quality. Also, we believe that using another geophysical method, in addition to TSP 303, could be helpful in making decisions in support of excavation, especially in complicated geological conditions.


2012 ◽  
Vol 550-553 ◽  
pp. 2472-2477
Author(s):  
Yu Chun Bai ◽  
Yong Li Li ◽  
Fu Li Qi ◽  
Feng Long Zhang

Heiyu Lake zone of Daqing is located in the southwest hollow borderland of Heiyu Lake and on the arching transitional zone of Daqing placanticline. Based on the geological background of Heiyu Lake, this paper analyzes the landform, the regional geological structure, the formation lithology and the irruptive rock and other metallogenic conditions in detail. The indispensable geological conditions for forming geothermal field in layers were summed up. Combining with the development characteristics and geophysical data of formation, the bore hole site of geothermal well and target stratum were ascertained. The four major elements of forming geothermal resources in this region were confirmed by carrying out geothermal drilling.


2012 ◽  
Vol 518-523 ◽  
pp. 5754-5759
Author(s):  
Dong Jian Xue ◽  
Zheng Wei He ◽  
Xiang Dong Zheng

Derong County is located in Ganzi Tibetan Autonomous Prefecture in southern part of Sichuan Province, in the upper of the Jinsha River, where there is a subtropical plateau monsoon climate, abundant sunshine, and large amount of evaporation, so it is a typical dry-hot valleys region. Derong County is the area of more ups and downs in the terrain, deep valleys, steep mountains, complex geological conditions, intense tectonic activity, various climate types, and has obvious vertical zone effect by temperature, serious physical weathering of rock, and landslide, debris flow, collapse and other geohazards are easily induced under the influence of rainfall and human engineering activities. These geohazards have brought serious harm to the people's lives and property, and have a great impact on the socio-economic development. Through the analysis of geohazards in the study area to investigate its distribution and development trends, this paper provide a basis for geohazard prevention and economic development.


Author(s):  
С.А. Мамаев ◽  
А.Р. Юсупов ◽  
А.С. Мамаев ◽  
З.А. Юсупов

В данной статье даны особенности геологического строения района газопроявления «Цущар» в Кулинском районе на отложениях среднеюрского возраста, предлагается геолого-структурная схема возможного формирования залежи нефти и газа. Незначительные проявления газоносности, связанные обычно с минеральными источниками и подчиненные мощной толще юрских сланцев, развитых на значительных площадях нагорного Дагестана, начали обращать на себя внимание с 1931 г., в связи с поисками месторождений легких редких газов. Анализы газов показывают повышенное содержание легких редких газов в целом ряде месторождений нагорного Дагестана. Кроме группы месторождений Южного Дагестана известен пока только один выход горючего газа в Центральном Дагестане – Кулинском районе. На него указывает в своем рукописном отчете Дагестанскому Совнархозу геолог Н. М. Леднев. Этот выход подчинен юрским сланцам, связан с нарушениями неотектонического характера, образованными в результате сейсмической активизации региона. Цель исследования. Целью наших исследований является обоснование перспектив газоносности Горного Дагестана. На изучаемой территории отмечается наличие неправильных куполовидных складок с неожиданными направлениями их осей, пересекающими основное направление складчатости, частичными местными уклонениями в залегании пластов. Методы исследования. Основными методами исследования при изучении перспектив газоносности Горного Дагестана являлись геолого-структурный, стратиграфический, морфологический, тектонический и дешифрирование аэрофотоснимков. Результаты исследования. По сравнению с Предгорным Дагестаном и Прикумским районом, Горный Дагестан был подвержен более интенсивным геотектоническим движениям, неоднократно подвергался складчатости, испытал инверсию, со значительно большей амплитудой, что привело к усиленной денудации, развитию трещиноватости и разрывов, метаморфизму пород и органических образований. Все это отрицательно влияло на сохранение нефти и газа. Можно предполагать, что многие залежи, сформировавшиеся при прохождении продуцирующими толщами главной фазы нефтеобразования, были разрушены в периоды активизации тектонической деятельности на рубеже юры и мела, мела и палеогена. В дальнейшем шла генерация, преимущественно, газообразных углеводородов, которые при особенно благоприятных условиях могли сохраниться до настоящего времени. По результатам исследований можно утверждать, что газовое проявление Цущар могло проявиться в 1622, 1652 гг. в результате сильных землетрясений, эпицентр которых располагался в пределахисследуемого района This article describes the features of the geological structure of the Tsushar gas show area in the Kulinsky region on the Middle Jurassic deposits, and proposes a geological-structural diagram of the possible formation of oil and gas deposits. Minor manifestations of gas content, usually associated with mineral springs and subordinate to a thick stratum of Jurassic shales, developed over large areas of highland Dagestan, began to attract attention from 1931, in connection with the search for deposits of light rare gases. Gas analyzes show an increased content of light rare gases in a number of fields in highland Dagestan. In addition to the group of fields in Southern Dagestan, only one outlet of combustible gas in Central Dagestan is known – the Kulinsky region. It is pointed out in his handwritten report to the Dagestan Economic Council by the geologist N. M. Lednev. This outlet is subordinate to the Jurassic shale and is associated with neotectonic disturbances formed as a result of seismic activation of the region. Aim. The purpose of our research is to substantiate the prospects for gas content in Gorny Dagestan. In the study area, there are irregular dome-shaped folds with unexpected directions of their axes crossing the main direction of folding, partial local deviations in bedding. Methods. The main research methods in the study of the prospects for the gas content of Mountainous Dagestan were geological-structural, stratigraphic, morphological, tectonic and additional aerial photographs. Research results. Compared to Piedmont Dagestan and Prikumskiy region, Gorny Dagestan was subject to more intense geotectonic movements, repeatedly underwent folding, experienced inversion, with a much higher amplitude, which led to increased denudation, the development of fracturing and fractures, metamorphism of rocks and organic formations. All of this negatively affected the conservation of oil and gas. It can be assumed that many deposits, formed during the passage of the producing strata of the main phase of oil formation, were destroyed during periods of intensified tectonic activity at the boundary between the Jurassic and Cretaceous, Cretaceous and Paleogene. In the future, there was the generation of mainly gaseous hydrocarbons, which, under especially favorable conditions, could persist to the present day. According to the research results, it can be argued that the gas manifestation of Tsushar could have manifested itself in 1622, 1652. as a result of strong earthquakes, the epicenter, which was located within the study area


2021 ◽  
Vol 303 ◽  
pp. 01029
Author(s):  
Alexander Katsubin ◽  
Victor Martyanov ◽  
Milan Grohol

Information about the geological structure of Kuznetsky coal basin (Kuzbass) allows us to note that coal deposits developed by open-cast method are characterized by complicated conditions and have the following features: large length of deposits at significant depths of occurrence; coal series bedding of different thicknesses (from 1 to 40 m); different dip angles (from 3 to 90º); a significant number of dip and direction disturbances; different thickness of unconsolidated quaternary sediments (from 5 to 40 m); a wide range of strength values of rocks. In addition, there is a thickness irregularity and frequent variability of elements of occurrence of coal seams within the boundaries of a quarry field both in length and depth of mining. From the point of view of open-pit mining, such deposits are complex-structured. The factors listed above have a decisive influence on the choice of technical means, the order of development and the possibility of carrying out surface mining operations. Therefore, there is a need for a systematization of mining and geological conditions for the development of coal deposits, the purpose of which is to ensure a process of evaluation of complex-structured coal deposits for the development of coal-bearing zones by various complexes of equipment.


2019 ◽  
Vol 16 (5) ◽  
pp. 939-949
Author(s):  
Yonggao Yue ◽  
Tao Jiang ◽  
Jingye Wang ◽  
Yunfeng Chao ◽  
Qi Zhou ◽  
...  

Abstract Performing exact predictions of geological conditions for tunnel construction is important for ensuring safe and quick tunnel engineering. Weak effective signals and strong random noise are the main factors that affect the distance and precision of tunnel seismic detection. Considering that directional seismic wave (DSW) technology has the ability to enhance target signals and suppress random noise, we attempt to apply this method to solve the problems of low detection accuracy and short detection distance. However, the process of data processing with the DSW technique generates false multiple wave interference (FMWI), which can lead to the misinterpretation of geological structures. This study analyses the origins of FMWI and presents the random dislocation directional seismic wave (RDDSW) method to suppress this interference. The results of a numerical simulation indicate that the FMWI is effectively suppressed and that the signal-to-noise ratio of the data is increased by approximately N times through use of the N-element RDDSW technique. In the ideal case, only spherical diffusion attenuation is considered, and the detection distance increases by approximately $\scriptstyle\sqrt N $ times. In addition, this method is also effective for signals from curved events, thereby improving the precision of the analysis of the geological structure of the tunnel. Furthermore, the field data results further verify that the RDDSW technique can significantly suppress interference and thus improve the quality of the data at little cost. Hence, the RDDSW technique has great significance for accurately predicting the geological structures of tunnels and increasing the detection distance in tunnels.


2018 ◽  
Vol 71 ◽  
pp. 00018
Author(s):  
Marek Zygmunt ◽  
Stefan Cacoń ◽  
Andrzej Piotrowski ◽  
Grzegorz Stępień

The location of reference points in deformation studies of engineering objects is often associated with low reliability of the obtained measurement results. This concerns the lack of proper diagnosis of the geological structure of the area. The reliability of deformation measurements is also low when we obtain data that only characterize the effects and not the cause-and-effects. The authors reviewed the influence of geological conditions on the formation of deformations of some engineering objects. The reference points were located in the immediate vicinity of the facilities, without taking into account the geological structure of the areas where the facilities were located. The proposed test method is based on a three-segment control and measurement system. An example of such considerations is the engineering facilities on the Grodzka and Ostrów Grabowski Island in the Szczecin area. The basic issue is to locate geologically stable areas in the vicinity of monitored engineering objects on the basis of geological substrate assessment and to analyse archival materials concerning periodical measurements of class 1 and 2 levelling lines in the Szczecin area. Reference points are located, which constitute the first segment of the control and measurement system. Subsequent segments of the system are organized with reference to the points of the first segment. This method provides reliable data on deformations of engineering objects.


2019 ◽  
Vol 11 (23) ◽  
pp. 2822 ◽  
Author(s):  
Fabio Matano

The high levels of geo-hydrological, seismic, and volcanic hazards in the Campania region prompted full data collection from C-band satellites ERS-1/2, ENVISAT, and RADARSAT within regional (TELLUS) and national (PST-A) projects. The quantitative analysis, interpretation, and classification of natural and human-induced slow-rate ground deformations across a span of two decades (1992–2010) was performed at regional scale (Campania, Italy) by using interferometric archive datasets, based on the Persistent Scatterer Interferometry approach. As radar satellite sensors have a side-looking view, the post-processing of the interferometric datasets allows for the evaluation of two spatial components (vertical and E-W horizontal ones) of ground deformation, while the N-S horizontal component cannot be detected. The ground deformation components have been analyzed across 89.5% of the Campania territory within a variety of environmental, topographical, and geological conditions. The main part (57%) of the regional territory was characterized during 1992–2010 by stable areas, where SAR signals do not have recorded significant horizontal and vertical components of ground deformation with an average annual rate greater than +1 mm/yr or lower than −1 mm/yr. Within the deforming areas, the coastal plains are characterized by widespread and continuous strong subsidence signals due to sediment compaction locally enhanced by human activity, while the inner plain sectors show mainly scattered spots with locally high subsidence in correspondence of urban areas, sinkholes, and groundwater withdrawals. The volcanic sectors show interplaying horizontal and vertical trends due to volcano-tectonic processes, while in the hilly and mountain inner sectors the ground deformation is mainly controlled by large-scale tectonic activity and by local landslide activity. The groundwater-related deformation is the dominant cause of human-caused ground deformation. The results confirm the importance of using Persistent Scatterer Interferometry data for a comprehensive understanding of rates and patterns of recent ground deformation at regional scale also within tectonically active areas as in Campania region.


Sign in / Sign up

Export Citation Format

Share Document