scholarly journals The problem of credibility studies on deformations of engineering objects in the geologically unstable area of Szczecin

2018 ◽  
Vol 71 ◽  
pp. 00018
Author(s):  
Marek Zygmunt ◽  
Stefan Cacoń ◽  
Andrzej Piotrowski ◽  
Grzegorz Stępień

The location of reference points in deformation studies of engineering objects is often associated with low reliability of the obtained measurement results. This concerns the lack of proper diagnosis of the geological structure of the area. The reliability of deformation measurements is also low when we obtain data that only characterize the effects and not the cause-and-effects. The authors reviewed the influence of geological conditions on the formation of deformations of some engineering objects. The reference points were located in the immediate vicinity of the facilities, without taking into account the geological structure of the areas where the facilities were located. The proposed test method is based on a three-segment control and measurement system. An example of such considerations is the engineering facilities on the Grodzka and Ostrów Grabowski Island in the Szczecin area. The basic issue is to locate geologically stable areas in the vicinity of monitored engineering objects on the basis of geological substrate assessment and to analyse archival materials concerning periodical measurements of class 1 and 2 levelling lines in the Szczecin area. Reference points are located, which constitute the first segment of the control and measurement system. Subsequent segments of the system are organized with reference to the points of the first segment. This method provides reliable data on deformations of engineering objects.

2020 ◽  
Vol 24 (4) ◽  
pp. 61-74
Author(s):  
Krzysztof Łapiński ◽  
Piotr Sołowiej

AbstractIn 2020, a fully automated hydropower plant was launched on the Guber River near the town of Kotkowo. The plant is operated by a master control and measurement system, which collects data to evaluate the operation of selected systems of the facility. The number and location of sensors controlling the parameters of hydroelectric systems are selected accordingly, to collect complete information from all sensors and analyze the operation of hydroelectric systems in real time. In addition, storing all the controlled parameters allows analyzing the plant’s operation over longer periods. This work presents the possibilities of this measurement system, as well as the measurement results obtained in the tested object. Analyzing the operation of the control and measurement system as well as the collected and archived data will be the foundation for a simulation model of a hydropower plant. The model will be helpful in optimizing the operation of existing hydroelectric plants in terms of energy production per unit volume of water, and in designing new ones on existing barrage.


2014 ◽  
Vol 568-570 ◽  
pp. 131-136
Author(s):  
Si Yuan Frank Yang

Measurement systems play important roles in producing consistent, high quality products in manufacturing industries. An important requirement for a measurement system is the consistency or stability of its measurement results. The measurement bias needs to be checked periodically in production to decide whether the measurement system needs to be recalibrated timely to maintain the consistency. A very popular conventional method of statistical bias test recommended by ISO/TS16949 for manufacturing industries has been reviewed. Its flaws and problems are pointed out and illustrated with special examples. A new method of engineering bias test and its equivalent accuracy test have been proposed to correct the problems of the conventional statistical bias test.


2020 ◽  
Vol 12 (1) ◽  
pp. 1094-1104
Author(s):  
Nima Dastanboo ◽  
Xiao-Qing Li ◽  
Hamed Gharibdoost

AbstractIn deep tunnels with hydro-geological conditions, it is paramount to investigate the geological structure of the region before excavating a tunnel; otherwise, unanticipated accidents may cause serious damage and delay the project. The purpose of this study is to investigate the geological properties ahead of a tunnel face using electrical resistivity tomography (ERT) and tunnel seismic prediction (TSP) methods. During construction of the Nosoud Tunnel located in western Iran, ERT and TSP 303 methods were employed to predict geological conditions ahead of the tunnel face. In this article, the results of applying these methods are discussed. In this case, we have compared the results of the ERT method with those of the TSP 303 method. This work utilizes seismic methods and electrical tomography as two geophysical techniques are able to detect rock properties ahead of a tunnel face. This study shows that although the results of these two methods are in good agreement with each other, the results of TSP 303 are more accurate and higher quality. Also, we believe that using another geophysical method, in addition to TSP 303, could be helpful in making decisions in support of excavation, especially in complicated geological conditions.


2021 ◽  
Vol 28 (1) ◽  
pp. 426-436
Author(s):  
Zelin Ding ◽  
Xuanyi Zhu ◽  
Hongyang Zhang ◽  
Hanlin Ban ◽  
Yuan Chen

Abstract Geological conditions play a decisive role in the stability of arch dam engineering, and the asymmetric geological conditions of the abutment have a very negative impact on the safety of the arch dam. This article takes Lizhou arch dam as the research object, and determines that the arch dam is preliminarily affected by the geological asymmetric characteristics. Through the geomechanical model test method, the overload failure test of the Lizhou arch dam was carried out, and the resistance body, the instability deformation of the structural plane of the two dam abutments, and the influence of each structural plane on the dam body are obtained, and the safety factor is determined. According to the test results under the condition of asymmetric foundation of arch dam, for the structural plane which affects the geological asymmetry of the arch dam, the corresponding reinforcement measures are carried out. The feasibility of the reinforcement scheme is verified by the finite element method, and the safety factor after reinforcement is obtained. According to the results, it is suggested that some engineering measures can be taken to reduce the geological asymmetry between the two banks and ensure the safe and stable operation of the arch dam in the future.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1744
Author(s):  
Fernando Rodríguez Varela ◽  
Manuel José López Morales ◽  
Rubén Tena Sánchez ◽  
Alfonso Tomás Muriel Barrado ◽  
Elena de la Fuente González ◽  
...  

This paper introduces a near-field measurement system concept for the fast testing of linear arrays suited for mass production scenarios where a high number of nominally identical antennas needs to be measured. The proposed system can compute the radiation pattern, directivity and gain on the array plane, as well as the array complex feeding coefficients in a matter of seconds. The concept is based on a multi-probe antenna array arranged in a line which measures the near field of the antenna under test in its array plane. This linear measurement is postprocessed with state-of-the-art single-cut transformation techniques. To compensate the lack of full 3D information, a previous complete characterization of a “Gold Antenna” is performed. This antenna is nominally identical to the many ones that will be measured with the proposed system. Therefore, the data extracted from this full characterization can be used to complement the postprocessing steps of the single-cut measurements. An X-band 16-probe demonstrator of the proposed system is implemented and introduced in this paper, explaining all the details of its architecture and operation steps. Finally, some measurement results are given to compare the developed demonstrator with traditional anechoic measurements, and show the potential capabilities of the proposed concept to perform fast and reliable measurements.


2012 ◽  
Vol 550-553 ◽  
pp. 2472-2477
Author(s):  
Yu Chun Bai ◽  
Yong Li Li ◽  
Fu Li Qi ◽  
Feng Long Zhang

Heiyu Lake zone of Daqing is located in the southwest hollow borderland of Heiyu Lake and on the arching transitional zone of Daqing placanticline. Based on the geological background of Heiyu Lake, this paper analyzes the landform, the regional geological structure, the formation lithology and the irruptive rock and other metallogenic conditions in detail. The indispensable geological conditions for forming geothermal field in layers were summed up. Combining with the development characteristics and geophysical data of formation, the bore hole site of geothermal well and target stratum were ascertained. The four major elements of forming geothermal resources in this region were confirmed by carrying out geothermal drilling.


2004 ◽  
Vol 36 (1) ◽  
pp. 27-41 ◽  
Author(s):  
A.V. Byakova ◽  
Yu.V. Milman ◽  
A.A. Vlasov

Specific features of the test method procedure capable for determining the plasticity characteristic dH by indentation of inhomogeneous coatings affected by residual stress was clarified. When the value of the plasticity characteristic for coating was found to be as great as dH > 0.5 a simplified model was found to be reasonably adequate, while a modified model assumed compressibility of the deformation core beneath indentation. The advantage of the modified approach compared to the simplified one was grounded experimentally only if the elastic deformation for coating becomes greater than ?e ? 3.5%, resulting in the decrease of plasticity characteristic dH < 0.5. To overcome non accuracy caused by the effect of the scale factor on measurement results a comparison of different coatings was suggested using stabilized values of the plasticity characteristic dH determined under loads higher than critical, P ? Pc, ensuring week dependence of micro hardness values on the indentation load.


2015 ◽  
Vol 105 (06) ◽  
pp. 377-383
Author(s):  
F. Klocke ◽  
R. Brocker ◽  
F. Vits ◽  
P. Mattfeld

Beim Vibrationsgleitschleifen wird der Werkstoffabtrag maßgeblich durch die vorherrschenden Kontaktkräfte zwischen dem Werkstück und den Schleifkörpern bestimmt. Dieser Fachartikel stellt ein Messsystem vor, mit dem die messtechnische Erfassung der Kontaktkräfte beim ungeführten Vibrationsgleitschleifen möglich ist. Ein Alleinstellungsmerkmal ist dabei die vollständig kabellose Ausführung des Messsystems. Somit wurden die Messergebnisse nicht durch Kabel beeinflusst, die üblicherweise für die Energieversorgung und Datenübertragung notwendig sind. Mithilfe dieses Messsystems wurde der Einfluss folgender Prozesseingangsgrößen systematisch untersucht: Schleifkörpergröße, Unwuchtmotordrehzahl, Versatzwinkel der Unwuchtgewichte sowie die Masse des unteren und oberen Unwuchtgewichts auf die Kontaktkräfte. &nbsp; In vibratory finishing the material removal is influenced by the contact forces between work piece and media. In this paper a measurement system is presented which is able to measure contact forces between work piece and media in unguided vibratory finishing. The unique feature of the measurement system is its completely wireless construction so that the measurement results are not influenced by wires of the force sensor system including the electrical power supply and the data logging. By means of this measurement system, contact forces can be measured in unguided vibratory finishing processes for the first time. Furthermore, the influence of media size and adjustment of the unbalance motor like revolution speed, phase angle and mass distribution between the upper and the lower eccentric weight on the contact forces was investigated.


2018 ◽  
Vol 41 (4) ◽  
pp. 1149-1159
Author(s):  
Yonghua Lu ◽  
Jing Li ◽  
Xiang Zhang ◽  
Yang Li

For measuring the thrust of combined nozzles in satellite thruster with a small space, the test method that the nozzle directly sprays on the load baffle is employed in this paper. The key problem is how to design the positions of 10 load baffles and how to construct the measurement system. A set of complete and automatic nozzle thrust measurement system is designed and built, and the influence of the load baffle applied on the flow field of nozzles is analyzed using the software FLUENT. Furthermore, the load surface locations of the sensors for the different types of nozzles are analyzed. We draw the conclusion that the load baffle position should range from 4–8 mm for the I-type nozzle and range in 6–12 mm for II-type and III-type nozzle. The correction coefficients of the thrust forces for all channels of the measurement system are determined in the calibration experiment. The uncertainty of measurement system is estimated and the error source of the measurement system is traced. We found that the systematic uncertainty is mainly contributed by the A-type uncertainty which is related with the nozzle dimension and its inner structure. The B-type uncertainty of system is contributed by the force sensor.


Sign in / Sign up

Export Citation Format

Share Document