scholarly journals Pengaruh Perlakuan Termal Terhadap Karakteristik Aspal Komposit Berbasis Silika Sekam Padi

2020 ◽  
Vol 8 (1) ◽  
pp. 119-126
Author(s):  
Nita Susanti ◽  
◽  
Juniati Br Simbolon ◽  
Simon Sembiring ◽  
Posman Manurung ◽  
...  

Synthesis and characterization of asphalt has been modified with silica rice husk with temperature variations of 200, 250, and 300oC. Silica is obtained from rice husk using the sol gel method. Furthermore asphalt and silica are solidified at 110oC. The experiment was conducted to determine the effect of temperature on the microstructure, structure, and functional groups of modified asphalt. SEM analysis shows asphalt modification with a temperature of 300oC in the form of different clumps. XRD analysis showed the phase formed from each temperature was an amorphous phase. The result of the FTIR analysis showed that the functional groups seen in the modified asphalt samples were Si-OH, Si-O-Si, Si-O, and C-H. The compressive strength carried out showed the strength of asphalt again cracks became stronger as the temperature increased.

2014 ◽  
Vol 70 (2) ◽  
Author(s):  
Nurafiqah Rosman ◽  
Zawati Harun ◽  
Muhammad Zaini Yunos ◽  
Sulaiman Hasan

In the present work, polysulfone (PSf) ultrafiltration membranes were prepared by solution casting via phase inversion process. The effects of synthesized rice husk (RH) zeolite on the properties and performance of the casted PSf membrane were observed and investigated. Characterization of synthesized RH zeolite and morphology of membrane were conducted by using X-ray diffractometer (XRD), field emission microscopy (FESEM) and scanning electron microscopy (SEM). XRD analysis shows a mixture of zeolite A, Y and P, while FESEM images showed agglomeration of cubic-shaped morphology of the synthesized RH zeolite. SEM analysis on membrane morphology indicates that the addition of synthesized RH zeolite obviously changed the microstructure of the membrane sub layer. At 2g RHY content, the membranes held the highest water permeability (315.29 Lm-2h-1) and continuously decreased with higher RHY content. The incorporation of the RHY particles beyond 2% causes declination to the membrane flux and increment to the humic acid rejection from 95.8 to 99.6%.


2010 ◽  
Vol 17 (05n06) ◽  
pp. 445-449 ◽  
Author(s):  
SUHUA FAN ◽  
QUANDE CHE ◽  
FENGQING ZHANG

The (100)-oriented Ca0.4Sr0.6Bi4Ti4O15(C0.4S0.6BTi ) thin film was successfully prepared by a sol-gel method on Pt/Ti/SiO2/Si substrate. The orientation and formation of thin films under different annealing schedules were studied using XRD and SEM. XRD analysis indicated that (100)-oriented C0.4S0.6BTi thin film with degree of orientation of I(200)/I(119) = 1.60 was prepared by preannealing the film at 400°C for 3 min followed by rapid thermal annealing at 800°C for 5 min. SEM analysis further indicated that the (100)-oriented C0.4S0.6BTi thin film with a thickness of about 800 nm was mainly composed of equiaxed grains. The remanent polarization and coercive field of the film were 16.1 μC/cm2 and 85 kV/cm, respectively.


2022 ◽  
Author(s):  
Sunita Kumari ◽  
Dhirendra Singhal ◽  
Rinku Walia ◽  
Ajay Rathee

Abstract The present project proposes to utilize rice husk and maize cob husk ash in the cement to mitigate the adverse impact of cement on environment and to enhance the disposal of waste in a sustainable manner. Ternary concrete / MR concrete was prepared by using rise husk and maize cob ash with cement. For the present project, five concrete mixes MR-0 (Control mix), MR-1 (Rice husk ash 10% and MR-2.5%), MR-2 (Rice husk ash 10% and MR-5%), MR-3 (Rice husk ash 10% and MR-2.5%), MR-4 (Rice husk ash 10% and MR-2.5%) were prepared. M35 concrete mix was designed as per IS 10262:2009 for low slump values 0-25mm. The purpose is to find the optimum replacement level of cement in M35 grade ternary concrete for I – Shaped paver blocks.In order to study the effects of these additions, micro-structural and structural properties test of concretes have been conducted. The crystalline properties of control mix and modified concrete are analyzed by Fourier Transform Infrared Spectroscope (FTIR), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). The results indicated that 10% Rice husk ash and 5% maize cob ash replaced with cement produce a desirable quality of ternary concrete mix having good compressive strength. The results of SEM analysis indicated that the morphology of both concrete were different, showing porous structure at 7 days age and become unsymmetrical with the addition of ashes. After 28 day age, the control mix contained more quantity of ettringite and became denser than ternary concrete. XRD analysis revealed the presence of portlandite in large quantity in controlled mix concrete while MR concrete had the partially hydrated particle of alite.


2019 ◽  
Vol 20 (1) ◽  
pp. 16 ◽  
Author(s):  
Duha Hussien Attol ◽  
Hayder Hamied Mihsen

Rice husk ash (RHA) was used to prepare sodium silicate, which in turn was functionalized with 3-(chloropropyl)triethoxysilane employing the sol-gel technique to form RHACCl. Chloro group in RHACCl was replaced with iodo group forming RHACI. Ethylenediamine was immobilized on RHACI in order to prepare it for the reaction with salicylaldehyde to form a silica derivative-salen. FT-IR analysis indicated the presence of secondary amine and –NH and C=N absorption bands. XRD analysis revealed the occurrence of the broad diffused peak with maximum intensity at 22–23° (2θ). BET measurements showed also that the surface area of the prepared compound is 274.55 m2/g. Elemental analysis proved the existence of nitrogen in the structure of the prepared compound. The silica derivative-salen showed high potential for extraction and removal of heavy contaminating metal ions Ni(II), Cu(II), and Co(II) from aqueous solutions. The kinetic study demonstrates that the adsorption of the metal ions follows the pseudo-second order.


2018 ◽  
Vol 64 (4) ◽  
pp. 381
Author(s):  
Muhammad Tufiq Jamil ◽  
Javed Ahmad ◽  
Syed Hamad Bukhari ◽  
Murtaza Saleem

Rare earth nano sized pollycrystalline orthoferrites and orthocromites ReT mO3 (Re = La, Nd, Gd, Dy, Y and T m = Fe, Cr) have been synthesized by sol-gel auto combustion citrate method. The samples have been characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and UV-visible spectroscopy. The samples are single phase as confirmed by XRD analysis and correspond to the orthorhombic crystal symmetry with space group pbnm. Debye Scherer formula and Williamson Hall analysis have been used to calculate the average grain size which is consistent with that of determined from SEM analysis and varied between 25-75 nm. The elemental compositions of all samples have been checked by EDX analysis. Different crystallographic parameters are calculated with strong structural correlation among Re and Tm sites. The optical energy band gap has been calculated by using Tauc relation estimated to be in the range of 1.77 - 1.87 eV and 2.77 - 3.14 eV, for ReFeO3 and ReCrO3, respectively.


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Eryani . ◽  
Sri Aprilia ◽  
Farid Mulana

<p>Agricultural waste such as rice straw, rice husk and rice husk ash have not been utilized properly. This waste of agricultural produce can actually be used as an alternative to bionanofiller because it contains an excellent source of silica. The silica content contained in the rice waste when combined with the polymer matrix can produce composites having high thermal and mechanical properties. Characterization of bionanofiller from this rice waste is done by SEM, XRF, FTIR, XRD and particle density. The result of SEM analysis from this rice waste is feasible to be used as filler because it has size 1 μm. Likewise with the results of XRF analysis that rice waste contains a high enough silica component that is 80.6255% - 89.83%. FTIR test results also show that bionanoparticles from rice waste have the same content of silica. In the XRD analysis the best selective gain of rice waste is found in rice husk ash which is characteristic of amorp silica at a range of 2ϴ = 22<br />. The largest density analysis of paddy waste was found in rice husk 0.0419 gr / cm , followed by rice straw by of 0.0417 gr / cm 3 and rice hulk ash 0.0407 g / cm 3</p>


2013 ◽  
Vol 448-453 ◽  
pp. 3041-3045
Author(s):  
Fei Bi ◽  
Xiang Ting Dong ◽  
Jin Xian Wang ◽  
Gui Xia Liu ◽  
Wen Sheng Yu

PVP/[Y(NO3)3+Al (NO3)3] composite nanobelts were fabricated via electrospinning combined with sol-gel process and novel structure of Y3Al5O12(denoted as YAG for short) nanobelts have been obtained after calcination of the relevant composite nanobelts. The structural properties were characterized by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). XRD analysis indicated that the composite nanobelts were amorphous, and YAG nanobelts were cubic in structure with space group Ia3d. FTIR analysis manifested that pure YAG nanobelts were formed at 900oC. SEM analysis and histograms revealed that the width of the composite nanobelts and YAG nanobelts were 3.5 μm and 2.4 μm, and the thickness were 240 nm and 112 nm, respectively, under the 95% confidence level. The formation mechanism of YAG nanobelts was discussed in detail.


2018 ◽  
Vol 1 (1) ◽  
pp. 114-124 ◽  
Author(s):  
Jesie Silva ◽  
Lizebel Morante ◽  
Tesfamichael Demeke ◽  
Jacqueline Baah-Twum ◽  
Abel Navarro

The prevalence of antibiotics in water creates microbial resistance and has a negative impact on the ecosystem. Biomaterials such as spent tea leaves are rich in functional groups and are suitable for chemical modification for diverse applications. This research proposes the use of spent tea leaves of chamomile (CM), green tea (GT), and peppermint (PM) as structural scaffolds for the incorporation of carboxyl, sulfonyl, and thiol groups to improve the adsorption of Penicillin G (Pe). Adsorbents characterization reported a higher number of acidic functional groups, mainly in thiolated products. Scanning electron microscopy (SEM) analysis showed changes on the surfaces of the adsorbents due to reaction conditions, with a stronger effect on thiolated and sulfonated adsorbents. Elemental analysis by Energy dispersive X-ray spectrophotometry (EDS) corroborated the chemical modification by the presence of sulfur atoms and the increase in oxygen/carbon ratios. Batch experiments at different pH shows a strong pH-dependence with a high adsorption at pH 8 for all the adsorbents. The adsorption follows the trend CMs > GTs > PMs. Thiolation and sulfonation reported higher adsorptions, which is most likely due to the sulfur bridge formation, reaching adsorption percentages of 25%. These results create a new mindset in the use of spent tea leaves and their chemical modifications for the bioremediation of antibiotics.


2016 ◽  
Vol 15 (01n02) ◽  
pp. 1650002 ◽  
Author(s):  
S. Lourduraj ◽  
R. Victor Williams

The nanocrystalline TiO2 powder was synthesized by sol–gel method. The XRD analysis reveals that TiO2 powder was highly crystalline (anatase phase) and nanostructured with tetragonal system. The average crystallite size after calcined at 673[Formula: see text]K is found to be 7.7[Formula: see text]nm. The surface morphological studies using scanning electron microscopy (SEM) exhibit that the formation of nanosized TiO2 particles with less densification nature. Atomic force microscopy (AFM) topography exhibits the uniform distribution of spherical-shaped particles. The energy dispersive X-ray spectroscopy (EDX) confirms the presence of Titanium and Oxygen in synthesized TiO2 nanopowder. The value of optical bandgap of TiO2 nanopowder calculated from UV-Visible spectrum is 3.45[Formula: see text]eV. The presence of TiO2 particles is confirmed from the dominant fourier transform infrared (FTIR) peaks at 621[Formula: see text]cm[Formula: see text] and 412[Formula: see text]cm[Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document