scholarly journals Field biomass as global energy source

2009 ◽  
Vol 18 (3-4) ◽  
pp. 347-365 ◽  
Author(s):  
K. HAKALA ◽  
M. KONTTURI ◽  
K. PAHKALA

Current (1997–2006) and future (2050) global field biomass bioenergy potential was estimated based on FAO (2009) production statistics and estimations of climate change impacts on agriculture according to emission scenario B1 of IPCC. The annual energy potential of raw biomass obtained from crop residues and bioenergy crops cultivated in fields set aside from food production is at present 122–133 EJ, 86–93 EJ or 47–50 EJ, when a vegetarian, moderate or affluent diet is followed, respectively. In 2050, with changes in climate and increases in population, field bioenergy production potential could be 101–110 EJ, 57–61 EJ and 44–47 EJ, following equivalent diets. Of the potential field bioenergy production, 39–42 EJ now and 38–41 EJ in 2050 would derive from crop residues. The residue potential depends, however, on local climate, and may be considerably lower than the technically harvestable potential, when soil quality and sustainable development are considered. Arable land could be used for bioenergy crops, particularly in Australia, South and Central America and the USA. If crop production technology was improved in areas where environmental conditions allow more efficient food production, such as the former Soviet Union, large areas in Europe could also produce bioenergy in set aside fields. The realistic potential and sustainability of field bioenergy production are discussed.;

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 675 ◽  
Author(s):  
Feledyn-Szewczyk ◽  
Radzikowski ◽  
Stalenga ◽  
Matyka

The purpose of the study was to compare earthworm communities under winter wheat in different crop production systems on arable land—organic (ORG), integrated (INT), conventional (CON), monoculture (MON)—and under perennial crops cultivated for energy purposes—willow (WIL), Virginia mallow (VIR), and miscanthus (MIS). Earthworm abundance, biomass, and species composition were assessed each spring and autumn in the years 2014–2016 using the method of soil blocks. The mean species number of earthworms was ordered in the following way: ORG > VIR > WIL > CON > INT > MIS > MON. Mean abundance of earthworms decreased in the following order: ORG > WIL > CON > VIR > INT > MIS > MON. There were significantly more species under winter wheat cultivated organically than under the integrated system (p = 0.045), miscanthus (p = 0.039), and wheat monoculture (p = 0.002). Earthworm abundance was significantly higher in the organic system compared to wheat monoculture (p = 0.001) and to miscanthus (p = 0.008). Among the tested energy crops, Virginia mallow created the best habitat for species richness and biomass due to the high amount of crop residues suitable for earthworms and was similar to the organic system. Differences in the composition of earthworm species in the soil under the compared agricultural systems were proven. Energy crops, except miscanthus, have been found to increase earthworm diversity, as they are good crops for landscape diversification.


Author(s):  
T. Zheliezna ◽  

Purpose of the study is to assess the current and prospective energy potential of agribiomass (agricultural residues and energy crops) in Ukraine, to determine its main components and the most effective areas of their use. Methods. The assessment of the current potential of agribiomass is performed using official statistics on crop production in Ukraine. Based on these data, the total amount of crop residues formed and their share available for energy needs is determined. When assessing the potential of energy crops, it is assumed that they are grown on 2 million hectares of unused agricultural land, the total area of which is up to 4 million hectares in Ukraine. The study of the prospective potential of biomass is performed for 2050, based on key growth factors, such as increasing yield of crops, especially cereals; doubling the area under energy crops and increasing their yields, etc. Results of the assessment show that according to 2018 data, the total bioenergy potential in Ukraine is more than 23 Mtoe (the economic potential). Its largest components are agricultural residues (44%) and energy crops (32%). Expert estimates suggest that by 2050, the biomass potential could increase to more than 47.5 Mtoe/yr, in other words almost to double. Forecasting the structure and directions of use of biomass potential by 2050 shows that about 20 Mtoe of biomass/biofuels of the following types will be consumed for energy: wood biomass, primary and secondary agricultural residues, energy crops, biogas/biomethane from different types of raw materials, liquid biofuels (biodiesel, bioethanol). Conclusions. Areas of use of biomass/biofuels include the production of heat and electricity from solid biofuels, obtaining of biogas and biomethane, as well as the production of motor biofuels (biomethane, biodiesel, bioethanol). In the near future, it is considered necessary to develop a long-term strategy for the development of bioenergy in Ukraine, taking into account results of the study. In turn, the basic figures of the bioenergy development strategy can be used for the elaboration of the updated Energy Strategy of Ukraine until 2050.


2014 ◽  
Vol 119 (6) ◽  
pp. 2711-2724 ◽  
Author(s):  
Merja H. Tölle ◽  
Oliver Gutjahr ◽  
Gerald Busch ◽  
Jan C. Thiele

Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 457
Author(s):  
Michalia Sakellariou ◽  
Basil E. Psiloglou ◽  
Christos Giannakopoulos ◽  
Photini V. Mylona

Agriculture terraces constitute a significant element of the Mediterranean landscape, enabling crop production on steep slopes while protecting land from desertification. Despite their ecological and historical value, terrace cultivation is threatened by climate change leading to abandonment and further marginalization of arable land imposing serious environmental and community hazards. Re-cultivation of terraced landscapes could be an alternative strategy to mitigate the climate change impacts in areas of high vulnerability encouraging a sustainable agroecosystem to ensure food security, rural development and restrain land desertification. The article presents the case study of abandoned terrace re-cultivation in the Aegean Island of Andros, using a climate smart agriculture system, which involves the establishment of an extensive meteorological network to monitor the local climate and hydrometeorological forecasting. Along with terrace site mapping and soil profiling the perfomance of cereal and legume crops was assessed in a low-input agriculture system. The implementation of a land stewardship (LS) plan was indispensable to overcome mainly land fragmentation issues and to transfer know-how. It was found that climate data are key drivers for crop cultivation and production in the island rainfed farming system. The study revealed that terrace soil quality could be improved through cultivation to support food safety and stall land degradation. In line with global studies this research suggest that cultivation of marginal terraced land is timely through a climate smart agriculture system as a holistic approach to improve land quality and serve as means to combat climate change impacts. The study also discusses land management and policy approaches to address the issue of agricultural land abandonment and the benefits gained through cultivation to the local community, economy and environment protection and sustainability.


2021 ◽  
Vol 13 (1) ◽  
pp. 381
Author(s):  
Nii Nelson ◽  
Jo Darkwa ◽  
John Calautit ◽  
Mark Worall ◽  
Robert Mokaya ◽  
...  

Crop residues are common in rural Ghana due to the predominant role agriculture plays in livelihood activities in these communities. In this paper we investigate the prospects of exploiting agricultural crop residues for rural development in Ghana through bioenergy schemes. A theoretical energy potential of 623.84 PJ per year, which is equivalent to 19,781 MW was estimated using crop production data from the Food and Agricultural Organization of the United Nations and residue-to-product ratios. Ghana has a total installed generation capacity of 4577 MW which is four times less the energy potential of crop residues in the country. Cocoa pod husks were identified as important biomass resources for energy generation as they are currently wasted. To further assess the energy potential of cocoa pod husks, different cocoa pod husks samples were collected across the six cocoa growing regions in Ghana and thermo-chemically characterised using proximate and ultimate analysis. The low levels of nitrogen and sulphur observed, together with the high heating value, suggest that cocoa pod husks and for that matter crop residues are eco-friendly feedstock that can be used to power rural communities in Ghana.


2018 ◽  
Vol 12 (1) ◽  
pp. 51-55 ◽  
Author(s):  
S. Antony Ceasar

Phosphorus (P) is an important macronutrient affecting the growth and yield of all crop plants. Plants absorb P from the soil solution as inorganic phosphate (Pi). More than 70% of the arable land is deficient of Pi which demands the supply of an external source of synthetic P fertilizers to improve the yields. The P fertilizers are manufactured from non-renewable rock phosphate reserves which are expected to be exhausted within the next 100-200 years. This poses a great threat to food security since it is very difficult to meet the food production caused by increasing world population without the supply of an adequate P fertilizer. Several efforts have been made in the past decade to understand the mechanism of Pi uptake and its redistribution in plants. In this mini-review, we discuss the details on possible strategies to combat the crisis caused by loss of phosphate rock reserves and to improve the crop yield without much dependency on external P fertilizer. Approaches such as application of functional genomics studies to manipulate the expression levels of key transcription factors and genes involved in low Pi stress tolerance, molecular marker-assisted breeding to develop new varieties with improved yields under Pi-deficient soils and to recapture the Pi released in wastewaters for recycling back to the farm lands, will help improve the crop production without depending much on non-renewable P fertilizers and will also aid for the sustainable food production.


2017 ◽  
Vol 6 (1) ◽  
pp. 27 ◽  
Author(s):  
Monday Sunday Adiaha

The study surveys the economic value of Maize (Zea mays L) in Nigeria and its impact on global food production. The result analysis proves maize to be of high economic value in Nigeria, contributing massively to global increase in crop production. The crop has shown ability to be used in combating global food shortages. Data of this survey presented that production of maize in Nigeria has raised the standard of living, providing income to smallholder farmers and increased foreign exchange earnings. Utilization of maize in Nigeria ranges from; food, medicinal, pharmaceutical including industrial uses. Increase in maize production across Nigeria has greatly increase land utilization, where more arable land are been covered for the production of this important food crop, in-other to feed the ever-growing world population and as a measure for food/nutrition security, especially in developing countries like Nigeria.


2019 ◽  
Vol 4 (4) ◽  
pp. 141-148
Author(s):  
Maksim KULIK ◽  
Ruslan RUDENKO ◽  
Oleksander ONOPRIENKO

The article is devoted to determining the energy and economic efficiency of biofuel production from by-products of crop production. The following methods were used in the research process: monographic (in studying the economic and energy efficiency of plant biomass production in agricultural enterprises); statistical and economic (estimation of potential efficiency of crop production by-products); comparative analysis (when analyzing the economic efficiency of biomass production depending on crops); energy analysis (energy assessment of crop by-products potential of fields). The yield of basic products was determined by recalculating the yield of each crop to standard humidity and purity. The output of the by-products was established using special methods – a generalized assessment of the technically achievable energy potential of biomass and the methods of calculating the available potential of agro-raw materials. According to the results of the study, the yield level of the main products was analyzed, the economic efficiency of the production of by-products was determined, taking into account the crop residues (straw, stems) of winter wheat, corn, soybeans and sunflowers in the conditions of agricultural enterprises of the Myrhorod district of Poltava region. The amount of energy gain to generate heat is calculated depending on the plant biomass when used as biofuel feedstock. The available crop by-product potential of the crop production was evaluated, followed by the determination of the energy and economic efficiency of biomass. The potential of non-market crop production of winter wheat, soybean, corn and sunflower as alternative fuel and a basis for increasing the profitability of agricultural production has been determined which in the aggregate effect – attests to their profitability. Keywords: main products; by-products; economic efficiency; energy potential.


2021 ◽  
Vol 13 (19) ◽  
pp. 11065
Author(s):  
Marco Pastori ◽  
Angel Udias ◽  
Luigi Cattaneo ◽  
Magda Moner-Girona ◽  
Awa Niang ◽  
...  

Access to energy services is a priority for sustainable economic development, especially in rural areas, where small- and medium-sized enterprises have many difficulties in accessing reliable and affordable electricity. Western African countries are highly dependent on biomass resources; therefore, understanding the potential of bioenergy from crop residues is crucial to designing effective land-management practices. The assessment of the capability to use crop residues for electricity production is particularly important in those regions where agriculture is the dominant productive sector and where electrification through grid extension might be challenging. The objective of this work was to guide the development of sustainable strategies for rural areas that support energy development by simultaneously favouring food self-sufficiency capacity and environmental benefits. These complex interlinkages have been jointly assessed in the Senegal river basin by an integrated optimization system using a cropland–energy–water-environment nexus approach. The use of the nexus approach, which integrates various environmental factors, is instrumental to identify optimal land-energy strategies and provide decision makers with greater knowledge of the potential multiple benefits while minimizing trade-offs of the new solutions such as those connected to farmers’ needs, local energy demand, and food and land aspects. By a context-specific analysis, we estimated that, in 2016, 7 million tons of crop residues were generated, resulting in an electricity potential of 4.4 million MWh/year. Several sustainable land-energy management strategies were explored and compared with the current management strategy. Our results indicate that bioenergy production from crop residues can increase with significant variability from 5% to +50% depending on the strategy constraints considered. An example analysis of alternative irrigation in the Guinea region clearly illustrates the existing conflict between water, energy, and food: strategies optimizing bioenergy achieved increases both for energy and food production (+6%) but at the expense of increasing water demand by a factor of nine. The same water demand increase can be used to boost food production (+10%) if a modest decrease in bioenergy production is accepted (−13%).


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 971
Author(s):  
Matilde Ciani ◽  
Antonio Lippolis ◽  
Federico Fava ◽  
Liliana Rodolfi ◽  
Alberto Niccolai ◽  
...  

Current projections estimate that in 2050 about 10 billion people will inhabit the earth and food production will need to increase by more than 60%. Food security will therefore represent a matter of global concern not easily tackled with current agriculture practices and curbed by the increasing scarcity of natural resources and climate change. Disrupting technologies are urgently needed to improve the efficiency of the food production system and to reduce the negative externalities of agriculture (soil erosion, desertification, air pollution, water and soil contamination, biodiversity loss, etc.). Among the most innovative technologies, the production of microbial protein (MP) in controlled and intensive systems called “bioreactors” is receiving increasing attention from research and industry. MP has low arable land requirements, does not directly compete with crop-based food commodities, and uses fertilizers with an almost 100% efficiency. This review considers the potential and limitations of four MP sources currently tested at pilot level or sold as food or feed ingredients: hydrogen oxidizing bacteria (HOB), methanotrophs, fungi, and microalgae (cyanobacteria). The environmental impacts (energy, land, water use, and GHG emissions) of these MP sources are compared with those of plant, animal, insect, and cultured meat-based proteins. Prices are reported to address whether MP may compete with traditional protein sources. Microalgae cultivation under artificial light is discussed as a strategy to ensure independence from weather conditions, continuous operation over the year, as well as high-quality biomass. The main challenges to the spreading of MP use are discussed.


Sign in / Sign up

Export Citation Format

Share Document