scholarly journals Performance Improvement of a Type of Turning Machines

2018 ◽  
Vol 3 (8) ◽  
pp. 44 ◽  
Author(s):  
Marin Milkov Zhilevski ◽  
Mikho Rachev Mikhov

The basic problems in modernization of a type of turning machines with digital program control are discussed in this paper. The main requirements for the drive system are analyzed and formulated. A number of models for computer simulation with various electric drives have been developed aiming at studying their dynamic and static regimes for the respective control algorithms. Some options for performance improvement of the respective drives are presented. The experimental research carried out confirms good performance of the applied solutions. The results of this study can be used in the design and set up of such driving systems.

2019 ◽  
Vol 140 ◽  
pp. 04012
Author(s):  
Alexander Korzhev ◽  
Olga Bolshunova ◽  
Irina Voytyuk ◽  
Anna Vatlina

To develop new control algorithms for controlling slurry pumps, it is necessary to have a reliable mathematical model of their operation, convenient for computer simulation implementation. Therefore, the paper discloses a mathematical model of the joint operation of a centrifugal pump with a controlled asynchronous motor drive and a slurry pipeline. The results of transient modes computer simulation, carried out via the xcos application of the scilab software, are presented. This software is a freeware one and, therefore, available free of charge to most researchers. The paper provides an example of verification of the adequacy and performance of the proposed computer model, with the use of characteristics of the centrifugal slurry pump GrAT-225-67-3-2-2. The said model of a centrifugal pump is efficient and can be used during the study of dynamic processes in pipeline transportation systems, as well as in the synthesis of control algorithms for electric drives of pumping units.


2019 ◽  
Vol 299 ◽  
pp. 05003 ◽  
Author(s):  
Mikho Mikhov ◽  
Marin Zhilevski

This paper deals with some problems in the modernization of a type of machine tools with multi–coordinate drive systems. The basic requirements to the drives of each coordinate axis and the spindle are presented. Using the analysis carried out, a practical approach to appropriate selection of the respective drives is applied. The methodology offered is illustrated with some examples for choice of drives with direct current and alternating current motors. Some experimental research of cases with different feed and spindle drives are described and discussed. Better capabilities of the modernized machines for processing more complex workpieces are achieved, at a relatively low price. This research and the obtained results can be used in the design and tuning of electric drives for the considered type of machines with numerical program control.


Author(s):  
Shakhboz Dadabaev

The main negative factors affecting the starting modes of synchronous electric drives of pumping units of irrigation water supply systems were identified, computer simulation of direct and soft start of synchronous electric drive was made, the simulation results are shown in graphs and a brief conclusion was made on the study.


Author(s):  
Y-T Wang ◽  
R-H Wong ◽  
J-T Lu

As opposed to traditional pneumatic linear actuators, muscle and rotational actuators are newly developed actuators in rotational and specified applications. In the current paper, these actuators are used to set up two-dimensional pneumatic arms, which are used mainly to simulate the excavator's motion. Fuzzy control algorithms are typically applied in pneumatic control systems owing to their non-linearities and ill-defined mathematical model. The self-organizing fuzzy controller, which includes a self-learning mechanism to modify fuzzy rules, is applied in these two-dimensional pneumatic arm control systems. Via a variety of trajectory tracking experiments, the present paper provides comparisons of system characteristics and control performances.


1994 ◽  
Vol 116 (1) ◽  
pp. 248-256 ◽  
Author(s):  
C. Chassapis ◽  
G. G. Lowen

An experimentally verified simulation of the elastic-dynamic behavior of a lever-type feed mechanism is presented. Based on a combination of experimental and analytical findings, simplified motion equations could be introduced. In the experimental set-up, the motion of the mechanism is monitored by three angular encoders, which are attached to the drive shaft, the rocker-link shaft, and the feed roller shaft, respectively. Their output, which is stored in a specially designed data acquisition system, allows the correlation of the instantaneous rotations of the feed roller and the rocker shafts to that of the drive shaft. Strain gages provide in and out-of-plane bending-strain histories of the bent coupler. Experiment and theory, for different loading conditions, are correlated by way of the coupler strain, the clutch windup angle and the total feed length. Good qualitative and quantitative agreement between computed and experimental results was found.


Author(s):  
A Kireçci ◽  
L C Dülger

This paper presents a study of motion design and its implementation on a hybrid drive system that combines the motions of a large constant speed motor with a small servo motor by means of a mechanism in order to provide a powerful programmable drive system. In general, the most suitable function used to generate motion curves is the power form of polynomial functions. However, this function may produce some unexpected oscillations between the boundary conditions. A methodology is given to prevent this drawback of the interpolation function. A laboratory type set-up is designed and manufactured in order to realize the problems of practical implementation. An experimental application involving the hybrid drive system is included in the study presented.


Author(s):  
J AlaviMehr ◽  
M R Davis ◽  
J Lavroff ◽  
D S Holloway ◽  
G A Thomas

Ride control systems on high-seed vessels are an important design features for improving passenger comfort and reducing motion sickness and dynamic structural loads. To investigate the performance of ride control systems a 2.5m catamaran model based on the 112m INCAT catamaran was tested with an active centre bow mounted T-Foil and two active stern mounted trim tabs. The model was set-up for towing tank tests in calm water to measure the motions response to ride control step inputs. Heave and pitch response were measured when the model was excited by deflections of the T-Foil and the stern tab separately. Appropriate combinations of the control surface deflections were then determined to produce pure heave and pure pitch response. This forms the basis for setting the gains of the ride control system to implement different control algorithms in terms of the heave and pitch motions in encountered waves. A two degree of freedom rigid body analysis was undertaken to theoretically evaluate the experimental results and showed close agreement with the tank test responses. This work gives an insight into the motions control response and forms the basis for future investigations of optimal control algorithms.


2019 ◽  
Vol 287 ◽  
pp. 01026 ◽  
Author(s):  
Marin Zhilevski ◽  
Mikho Mikhov

This paper examines the main requirements for the electric drive systems of a class of boring machines with digital program control. On this basis, a methodology for choice of the spindle drives is offered. The algorithm takes into account the specific features of the technological processes, the treated materials, the tools used and their wear, as well as the mechanical gear types. The experimental studies of the implemented electric drives for the spindle are presented and discussed. The research carried out and the results obtained can be used in the development of such drives for the studied class of machine tools.


Sign in / Sign up

Export Citation Format

Share Document