Einfluss von Gruppe I Grundölen auf die Elastomerverträglichkeit von Radialwellendichtringen

2021 ◽  
Vol 68 (3-4) ◽  
Author(s):  
Kathrin Alt ◽  
Alexander Hüttinger ◽  
Markus Wöppermann ◽  
Jörg Hermes ◽  
Jürgen Braun ◽  
...  

Gear oils on the basis of Group I base oils are the most widely used lubricant in industrial drive systems. With dynamic friction torque tests, the influence of Group I base oils from different regions/refineries on elastomer compatibility of radial shaft seals is investigated by dynamic friction torque tests. The results show a significant influence of base oil on the development of frictional torque in the sealing gap and the elastomer compatibility.

2018 ◽  
Vol 39 (2) ◽  
pp. 91-100
Author(s):  
Setyo Widodo ◽  
M Hanifuddin ◽  
Rona Malam Karina

Friction affects the efficiency of a mechanical system. This paper discusses the influence of Tungsten Disulphide (WS2) as a friction modifier (FM). Friction and wear characteristics of base oil as a result of the addition of 0.1% and 0.5 % weight of WS2 were studied. WS2 nanoparticles were mixed with base oil using magnetic stirrer at 50oC for 60 minutes, then were homogenized in an ultrasonic homogenizer for 1 hour. Friction and wear characteristic of these mixtures were tested using four-ball and HFRR test-rig. The results show that the addition of both 0.1% and 0.5% WS2 nanoparticles increased by around 40% the anti-wear characteristic of mineral base oil group I and 12% for other groups of base oils. The increase in friction coefficients was in a range of 7.5% to 35% as a result of the addition of additives.


1974 ◽  
Vol 96 (1) ◽  
pp. 145-149 ◽  
Author(s):  
J. Freˆne ◽  
M. Godet

An experimental program conducted on an original device was undertaken to study the performance of plain bearings operating at sufficiently high Reynolds number to introduce Taylor vortices. Curves of relative eccentricity, attitude angle, and friction torque were obtained versus speed and load. Experimental results conducted for Reynolds number smaller than 1100 indicate that both laminar and Taylor vortex regimes are encountered. The occurrence of the vortices is identified by a break in the slope of the friction torque versus speed curves. The position of the break is in good agreement with the theoretical predictions of Di Prima and Ritchie. From the practical point of view, the data show that for constant viscosity the occurence of Taylor vortices does not alter the curves of eccentricity versus either speed or load but modifies the attitude angle and frictional torque. In turn, the increase in frictional torque, and subsequently of temperature may cause a decrease in viscosity and thus a drop in load carrying capacity for fluids such as oils whose variations of viscosity with temperature is large.


Author(s):  
Moussa Diaby ◽  
Michel Sablier ◽  
Anthony Le Negrate ◽  
Mehdi El Fassi

On the basis of ongoing research conducted on the clarification of processes responsible for lubricant degradation in the environment of piston grooves in EGR diesel engines, an experimental investigation was aimed to develop a kinetic model which can be used for the prediction of lubricant oxidative degradation correlated to endurance test conducted on engines. Knowing that base oils are a complex blend of paraffins and naphtenes with a wide range of sizes and structures, their chemistry analysis during the oxidation process can be highly convoluted. In the present work, investigations were carried out with the squalane (C30H62) chosen for its physical and chemical similarities with the lubricant base oils used during the investigations. Thermo-oxidative degradation of this hydrocarbon was conducted at atmospheric pressure in a tubular furnace, while varying temperature and duration of the tests in order to establish an oxidation reaction rate law. The same experimental procedures was applied to squalane doped with two different phenolic antioxidants usually present in engine oil composition: 2,6-di-tert-butyl-4-methylphenol (BHT), and octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate (OBHP). Thus, the effect of both antioxidants on the oxidation rate law was investigated. Data analysis of the oxidized samples (FTIR spectroscopy, gas chromatography/mass spectrometry GC/MS) allowed to rationalize the thermo-oxidative degradation of squalane. The resulting kinetic modelling provides a practical analytical tool to follow the thermal degradation processes, which can be used for prediction of base oil hydrocarbon ageing. If experiments confirmed the role of phenolic additives as an affective agent to lower oxidation rates, the main results lay in the observation of a threshold temperature where a reversed activity of these additives was observed.


Lubricants ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Seyed Ali Khalafvandi ◽  
Muhammad Ali Pazokian ◽  
Ehsan Fathollahi

Four commercial viscosity index improvers (VII) have been used to investigate the behavioral differences of these compounds in three types of universally applicable base oils. The used VIIs are structurally three types of co-polymer: ethylene-propylene, star isoprene, and two di-block styrene-isoprene. After dissolving of different amounts of VIIs in different base oils, the kinematic viscosities at two standard temperatures were determined and the intrinsic viscosities were calculated according to Huggins method, then the effects of changes in base oil and polymer type were investigated. Intrinsic viscosities as criteria for polymer molecules sizes were found to be higher at lower temperature than at higher temperature. Dependence of intrinsic viscosity on the polymer molecular weight was observed. In the previous works, one or two types of VIIs were studied in only one type of base oil and/or solvent, not different base oils. Furthermore, different ranges of temperatures and concentrations not necessarily applied ranges were selected, but in this work, common base oils and most commercial VIIs were used and the viscometric properties were compared at two temperatures. Viscosities at these temperatures are used for determining VI and definition of lubricant’s viscosity grades. VI improvement is the main cause of VII usage.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 692 ◽  
Author(s):  
Xiangqian Li ◽  
Yuyou Yang ◽  
Fan Li

This study proposes a novel sealing grease with improved mechanical properties and environmental performance. A series of sealing grease samples were made with different base oils, including mineral oil and renewable oil (vegetable oil and lard). In this study, thermogravimetric analysis (TGA) was conducted to study the adsorption capacity of the thickener to the base oil. The fluidity of the sealing grease was also tested at different temperatures. Furthermore, an exponential function was proposed for the flow rate of the sealing grease and the temperature. Moreover, a cone penetration test was conducted to study the consistency of the sealing grease. The results indicated that the capacity of the thickener to adsorb vegetable oil was greater than that of mineral oil, but less than that of lard. Additionally, the flow rate of the sealing grease increased with an increase in temperature. At a fixed temperature, the flow rate of the sealing grease increased with the base oil content. According to the exponential function, the composition of the base oil is the key factor that determines the temperature sensitivity of the sealing grease. In addition, the sealing grease made of vegetable oil has the minimum temperature sensitivity coefficient.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuying Zhang ◽  
Yuanhao Zhang

Purpose The purpose of this paper is to study the pumping efficiency of oil seals with different surface textures at different speeds, and the influence of the rotation direction of triangular texture on the sealing performance was further analyzed. Design/methodology/approach Based on the theory of elastohydrodynamic lubrication and the pumping mechanism of rotary shaft seals, establishing a numerical model of mixed lubrication in oil seal sealing area. The model is coupled with the lip surface texture parameters and the two-dimensional average Reynolds equation considering the surface roughness. Findings The results show that the application of lip surface texture technology has obvious influence on the oil film thickness, friction torque and pumping rate of oil seal. The triangular texture has the most significant effect on the increase of pump suction rate. When the rotation direction of triangular texture is 315 degrees, the pumping rate of oil seal is the largest compared with the other seven directions. Originality/value The model has a comprehensive theoretical guidance for the design of new oil seal products, which provides a certain basis for the application of surface texture technology in the field of sealing in the future. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2020-0198/


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Marlene Bartolomé Sáez ◽  
Antolin E. Hernández Battez ◽  
Jorge Espina Casado ◽  
José L. Viesca Rodríguez ◽  
Alfonso Fernández-González ◽  
...  

Purpose The purpose of this paper is to study the antifriction, antiwear and tribolayer formation properties of the trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate ionic liquid (IL) as additive at 1 wt.% in two base oils and their mixtures, comparing the results with those of a commercial oil. Design/methodology/approach The mixture of the base oils used in the formulation of the commercial oil SAE 0W20 plus the IL was tested under rolling/sliding and reciprocating conditions to determine the so-called Stribeck curve, the tribolayer formation and the antifriction and antiwear behaviors. Findings The use of this IL as additive in these oils does not change their viscosity; improves the antifriction and antiwear properties of the base oils, making equal or outperforming these properties of the SAE 0W20; and the thickness and formation rate of the tribolayer resulting from the IL-surface interaction is highly dependent on the type of base oil and influence on the friction and wear results. Originality/value The use of this IL allows to replace partial or totally commercial antifriction and antiwear additives. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2020-0179/


Author(s):  
Laurent Chambard ◽  
John Smythe

Additive technologies able to successfully lubricate gas engines have been available for many years, but in recent years the acceleration of both commercial and technical demands placed on gas engine lubricants has highlighted the performance limits of traditional additive solutions. One of these limits is the ability to reach long and very long oil drains, required by an increasing number of operators. Since traditional additive chemistries on conventional base oil systems have reached their limits in that respect, focus has been increasingly placed on using higher performance base oils so that longer oil drains can be reached. However, traditional additive chemistries have often proved to struggle in these higher performance base oils, particularly in the aspect of deposit control — demonstrating that a new generation of additive systems for the formulation of gas engine oils is needed. The authors present one such generation of additive systems, developed around off-the-beaten-track detergent technology; providing superior control of oxidation and deposits. Such additive systems can be used either in conventional base oil systems with improved drain interval, or in high performance base oil systems with very long drain interval and excellent control of deposits. Besides the description of the chemistry involved, the authors also present a methodology of performance evaluation in the laboratory, and compare this methodology with the performance perceived in the field.


2008 ◽  
Vol 373-374 ◽  
pp. 568-571 ◽  
Author(s):  
X.F. Sun ◽  
Yu Lin Qiao ◽  
Jia Wu He ◽  
Shi Ning Ma ◽  
C.H. Hu

High temperature tribological behavior of nano-Al2O3 in different base oils were tested by a SRV multifunctional test system. The results show that the nano-Al2O3 particles can obviously improve the antiwear and friction reducing properties of the base oil under high temperature and high load. The friction coefficients of the base oil with added nano-Al2O3 are reduced about 35%, and abrasion loss reduces about 60%. When temperature is 500°C and load is 500N the pure base oil has lost lubricative function, but the base oil with added nano-Al2O3 can still remain the lower friction coefficients. Tribological behavior should be similar to the “ball bearing” lubrication action of the nano-Al2O3 particles, so the movement between the two tribological pairs becomes sliding/rolling.


Sign in / Sign up

Export Citation Format

Share Document