scholarly journals ORMULATION, CHARACTERIZATION AND EVALUATION OF LIPOSOMAL HYDROGEL FOR THE TREATMENT OF ANTIBIOTIC RESISTANT PROPIONIBACTERIUM ACNE

2021 ◽  
Vol 11 (2) ◽  
pp. 65-71
Author(s):  
PANKAJ KUMAR PANDEY ◽  
◽  
ASHISH KUMAR PARASHAR ◽  

This work aimed to prepare and evaluate the topical liposomal hydrogel to treat antibiotic-resistant propionic bacterium acne. Nadifloxacin-loaded liposomes were prepared by thin-film hydration technique. Nadifloxacin, soya lecithin, cholesterol were dissolved in a mixture of chloroform and taken in different levels, and liposomes were prepared. The prepared liposomes were evaluated for in-vitro drug release. Formulation F2 was the highest percentage entrapment of 71±1.50% and released 58.12±1.2% of the drug in 6hrs. Minocycline hydrochloride-based hydrogel was prepared using the methylcellulose gelling agent, and the drug concentration was kept constant at 0.25%. The concentration of propylene glycol and methylparaben was kept constant at 15% and 0.3%. The hydrogel formulation was evaluated for various physicochemical parameters like percentage drug content, spreadability, and drug release. Formulation H9 was the highest drug content, 98.23 ± 0.031%, and the drug released 90.96±2.6% of the drug in 6hr. Out of these formulations, F2 from liposomes and H9 from hydrogel formula was selected to prepare the final liposomal hydrogel formulation. Developed liposomal hydrogel(F2H9) were evaluated like size, drug content and drug entrapment spreadability, homogeneity, washability, pH, etc. In-vitro drug release from liposomal hydrogel in Nadifloxacin release 54.86±3.1% and Minocycline hydrochloride 91.24±1.82% in 6hr. Developed liposomal hydrogel formulation can better treat acne due to high drug retention and permeation in skin layers. KEYWORDS: Acne, antibiotics, liposomes, hydrogel, Nadifloxacin, Minocycline hydrochloride

1970 ◽  
Vol 1 (3) ◽  
pp. 43-49 ◽  
Author(s):  
Jovita Kanoujia ◽  
Kanchan Sonker ◽  
Manisha Pandey ◽  
Koshy M Kymonil ◽  
Shubhini A Saraf

The present research work deals with the formulation and evaluation of in-situ gelling system based on sol-to-gel transition for ophthalmic delivery of an antibacterial agent gatifloxacin, to overcome the problems of poor bioavailability and therapeutic response exhibited by conventional formulations based a sol-to-gel transition in the cul-de-sac upon instillation. Carbopol 940 was used as the gelling agent in combination with HPMC and HPMC K15M which acted as a viscosity enhancing agent. The prepared formulations were evaluated for pH, clarity, drug content, gelling capacity, bioadhesive strength and in-vitro drug release. In-vitro drug release data of optimized formulation (F12) was treated according to Zero, First, Korsmeyer Peppas and Higuchi kinetics to access the mechanism of drug release. The clarity, pH, viscosity and drug content of the developed formulations were found in range 6.0-6.8, 10-570cps, 82-98% respectively. The gel provided sustained drug release over an 8 hour period. The developed formulation can be used as an in-situ gelling vehicle to enhance ocular bioavailability and the reduction in the frequency of instillation thereby resulting in better patient compliance. Key Words: In-situ gelation; Gatifloxacin; Carbopol 940; HPMC K15M. DOI: http://dx.doi.org/10.3329/icpj.v1i3.9661 International Current Pharmaceutical Journal 2012, 1(3): 43-49


Author(s):  
DIKSHA S. CHODANKAR ◽  
SACHI S. KUDCHADKAR ◽  
RAJASHREE S. GUDE ◽  
PRERANA D. NAVTI ◽  
SANAM M. SAWANT

Objective: The objective of the present study was to formulate flurbiprofen (FLB) emulgel, evaluation of the formulations and the selection of an optimized formulation through in vitro drug release and drug content studies. Flurbiprofen is a non-steroidal anti-inflammatory drug (NSAID) requiring frequent administration and its chronic intake can lead to systemic side effects like gastric irritation and GI bleeding. The development of a dermal drug delivery system can overcome these side effects. Methods: The emulgel formulations were produced using different combinations of oil and emulsifying agents. Carbopol 940 was used as a gelling agent. The prepared emulgels were evaluated for general appearance, pH, spreadability, extrudability, drug content, in vitro drug release, average globule size and viscosity. Results: Optimized formulation F7 showed a better in vitro drug release compared to the marketed gel preparation. The stability study for the optimized formulation was carried out at 25 °C/60 % RH for 3 mo and the emulgel was found to be stable concerning the physical appearance, pH and drug content. Conclusion: The study revolved around the formulation of emulgel containing Flurbiprofen for dermal delivery of the drug. Emulgel was formulated with the purpose to enhance the permeation of poorly water-soluble drug FLB. The study concluded that the optimized emulgel containing FLB exhibited better in vitro drug release profile compared to the marketed formulation.


Author(s):  
RAJASHRI B. AMBIKAR ◽  
ASHOK V. BHOSALE

Objective: Purpose of the study to design and formulate Diclofenac sodium (DIC) microsponges. Methods: With varied polymer: drug ratio DIC loaded microsponges were prepared with Eudragit RS100 polymer by quasi solvent diffusion method. Microsponges evaluated for particle size, entrapment efficiency, drug content, in vitro drug release, Fourier Transform Infrared Spectroscopy (FTIR), Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM). DIC loaded microsponges incorporated into ocular in situ gel to attained controlled release by microsponge and improved residence time by gelling system. Ocular in situ gel evaluated for pH, drug content determination, gelling capacity, in vitro drug release and sterility study. Results: DSER4 microsponge formulation having polymer to drug ratio 1:7 showed satisfactory production yield (68.13%), entrapment efficiency (62.86%), drug content (80.73%), requisite particle size (less than 10 µm) (7.52 µm) and in vitro release 87.94% after 6 h. Selected DSER4 formulation was incorporate into in situ gel. Carbopol 940 forms stiff gel at higher pH so used as a gelling agent, whereas Hydroxypropyl Methylcellulose E4M was used as a viscosity-enhancing agent for the formulation of in situ gel in varied compositions. In situ gel formulation IG4 showed sustained release of 76.92% till the end of 8 h and satisfactory gelling capacity so IG4 further evaluated for sterility test. Rheological studies reveal the sol-gel transition of in situ gel occur at the physiological condition to form stiff gel. Conclusion: Prepared in situ gel formulations showed sustained drug release for a period of 8 h, which is satisfactory for management of ocular pain.


Author(s):  
Pavithra K

Objective: The main purpose of this study was to develop a topical delivery of itraconazole to reduce the dose of the drug, to improve patient compliance, and to avoid the side effects. Itraconazole is a triazole derivative to treat antifungal and antiprotozoal infections. Methods: Topical gel formulations of itraconazole were prepared using Carbopol 940 as a gelling agent with different concentrations. Four different formulations were prepared and evaluated with respect to color, spreadability, viscosity measurement, determination of pH, drug content, in vitro drug release studies, zeta potential studies, and stability studies. Compatibility study was carried out by Fourier-transform infrared (FT-IR) spectral analysis. Results: FT-IR study revealed that there were no significant interaction between the drug and polymers. All the prepared formulations show acceptable physical properties. The drug content and percentage yield were higher for F1 formulation among all formulation F1 shows better drug release. Stability study of best formulation shows that there was no difference in drug content and in vitro drug release studies. Conclusion: From the above observation results that this formulation may be more encouraging topical substitute for the healing of fungal infections in the skin.


2020 ◽  
Vol 10 (01) ◽  
pp. 81-87
Author(s):  
Saba A. Jaber ◽  
Halah T. Sulaiman ◽  
Nawal A. Rajab

Flurbiprofen (FLB) is chemically 2-(3- fluoro-4-phenyl phenyl) propanoic acid. It is a nonsteroidal anti-inflammatory drug (NSAID) used in the treatment of rheumatoid arthritis and osteoarthritis. Oral administration of this drug is associated with severe gastrointestinal side effects like ulceration and gastrointestinal bleeding. The solution to this problem lies in the fact that topically applied NSAIDs are safer than orally. This study aims to prepare different topical semisolid formulation of FLB as cream base (o/w), (w/o) and gel base using different gel-forming agents in different concentrations. Comparing characterization properties in addition to release and diffusion study for all the prepared formulas to select the best one. Method: Topical semisolid FLB preparations were formulated using different semisolid formulation starting from emulsion bases w/o and o/w comparing with different gelling agents in different concentrations which include carbopol 934, sodium carboxy methylcellulose (SCMC) and combination of both polymer in different concentration to get 1% gelling agents. All the gel formulations were evaluated for physical appearance, pH, spreadability, rheological studies, drug content, in vitro release and diffusion studies. Results: All gel formulations which contain gelling agent exhibit better in vitro drug release and permeation compared with the emulsion bases, especially 1% polymer combination. Ethanol exerts a significant effect (p less than 0.05) on the in vitro drug release and diffusion for 2% carpbopol 934 compared with SCMC. Drug content was found to be uniform in all the formulations. The pH ranges of formulated gels were found to be suitable for topical application. Conclusion: Based on overall results, FLB can be successfully prepared as topical semisolid preparation with accepted properties.


Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


2018 ◽  
Vol 10 (4) ◽  
pp. 82
Author(s):  
Koyel Kar ◽  
R. N. Pal ◽  
Gouranga Nandi

Objective: The objective of the present work was to conduct accelerated stability study as per international council for harmonisation (ICH) guidelines and to establish shelf life of controlled release dosage form of ropinirole hydrochloride and pramipexole dihydrochloride microspheres for a period of 6 mo.Methods: Most optimized batch of ropinirole hydrochloride and pramipexole dihydrochloride (F12 and M12 respectively) were selected and subjected to exhaustive stability testing by keeping the sample in stability oven for a period of 3 and 6 mo. Various parameters like surface morphology, particle size, drug content, in vitro drug release and shelf life were evaluated at 3 and 6 mo period. The surface morphology of the formulated microspheres was determined by scanning electron microscopy (SEM). The particle size of the microspheres was estimated by optical microscopy method. The drug content was assayed by the help of ultra-violet spectrophotometer (UV). The in vitro drug release was performed by using Paddle II type dissolution apparatus and the filtrate was analyzed by UV spectrophotometer. The shelf life of the optimized microspheres was calculated by using the rate constant value of the zero-order reaction.Results: A minor change was recorded in average particle size of F12 and M12 microspheres after storage for 6 mo. For F12 and M12, initially the particle size was 130.00 µm and 128.92 µm respectively and after 6 mo it was found to be 130.92 µm and 128.99 µm respectively. There was no change in surface morphology of F12 and M12 microspheres after 6 mo of storage. The shape of microspheres remained spherical and smooth after 6 mo. An insignificant difference of drug content was recorded after 6 mo compared to the freshly prepared formulation. For F12 and M12, 94.50% and 93.77% of the drug was present initially and after 6 mo 94.45% and 93.72% of the drug was recorded. In vitro drug release was recorded after 6 mo for F12 and M12. Initially, 97.99% and 97.69% of the drug was released till 14th hour respectively for F12 and M12. After 6 mo, 98.23% and 97.99% of the drug was released respectively. The percentage residual drug content revealed that the degradation of microspheres was low. Considering the initial percentage residual drug content as 100%, 99.94% of the drug was recorded for both F12 and M12. The shelf life for F12 and M12 was found to be 10 y 52 d and 10 y 70 d respectively which were determined by the zero-order kinetic equation.Conclusion: A more or less similar surface morphology, particle size, drug content and percent of drug release before and after stability study confirmed the stability of F12 and M12 microspheres after storage for 6 mo and prove the efficacy of the microspheres in the site-specific delivery of drugs in Parkinson’s disease.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (02) ◽  
pp. 27-35
Author(s):  
A. A Bakliwal ◽  
◽  
D. S. Jat ◽  
S. G. Talele ◽  
A. G. Jadhav

The objective of the present study was to produce extended release nateglinide nanosponges for oral delivery. Preparation of nanosponges leads to solubility enhancement. Nateglinide is a BCS Class II drug, having low solubility. So, to increase the solubility of nateglinide it is formulated into nanosponges. Nanosponges using ethyl cellulose as a polymer and dichloromethane as a cross-linker were prepared successfully by ultra-sound assisted synthesis method. The effects of different drug: placebo ratios on the physical characteristics of the nanosponges as well as the drug content and in vitro drug release of the nanosponges were investigated. Particle size analysis and surface morphology of nanosponges were performed. The scanning and transmission electron microscopy of nanosponges showed that they were spongy in nature. The particle size was found to be in the range 46.37 - 97.23 nm out of which particle size of the optimized formulation was 51.79 nm and the drug content was found to 79.43 %. The optimized nanosponge formulations were selected for preparing nanosponge tablets for extended drug delivery by oral route. These tablets were prepared using xanthan gum and PVP K-30 and were evaluated by pre-compression and post-compression parameters. The nateglinide nanosponges tablet formulation were studied for different parameters using Design Expert Software. All formulations were evaluated for in vitro drug release analyzed according to various release kinetic models and it was found that it follows zero order release kinetics.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (07) ◽  
pp. 52-57

The aim of this research was to develop mucoadhesive buccal patches of nicergoline by using Factorial Design of Experiment, in order to provide a sustained release of drug into the systemic circulation. A 33 factorial experimental design was employed for optimization and to study the effect of formulation variables on responses R1 (% swelling index), R2 (% drug content), R3 (mucoadhesion time) and R4 (mucoadhesion strength). In vitro drug release study was performed on the optimized formulations. All the prepared formulations had good mechanical strength, mucoadhesion strength, neutral surface pH and drug content up to 98.17%. In vitro drug release study revealed that F-5 formulation showed promising sustained drug release profile (98.21%) for over 8 h and could be a potential substitute for marketed conventional formulations. The developed formulation (F5) was found to be optimized with considerably good stability and extended drug release profile.


Author(s):  
AMRIN SHAIKH ◽  
PRASHANT BHIDE ◽  
REESHWA NACHINOLKAR

Objective: The aim of the present investigation was to design gels for the topical delivery of celecoxib and evaluate with an aim to increase its penetration through the skin and thereby its flux. Method: The solubility of celecoxib is shown to be increased by preparing solid dispersions (SDs) using carriers such as mannitol, polyvinylpyrrolidone (PVP-K30), polyethylene glycol (PEG) 6000 and urea by solvent evaporation, fusion, and coevaporation methods. In vitro release profile of all SD was comparatively evaluated and studied against the pure drug. The prepared SD was subjected for percent practical yield, drug content, infrared spectroscopy, differential scanning calorimetry analysis, X-ray diffraction studies, and scanning electron microscopy (SEM) imaging. The celecoxib gel was prepared using hydroxypropyl methyl cellulose (HPMC) and Carbopol containing a permeation enhancer dimethyl sulfoxide (DMSO) at different proportions and evaluated for drug content, pH, viscosity, spreadability, extrudability, stability, and in vitro drug release. Results: Faster dissolution rate was exhibited by SD containing 1:5 ratio of celecoxib: PVP K-30 prepared by coevaporation method. In vitro drug release of celecoxib, gels revealed that formulation with HPMC has higher drug release as compared to Carbopol. Conclusion: The increase in dissolution rate for SD is observed in the following order of PVP K-30>urea>mannitol>PEG 6000. The CPD5 gel containing a SD CP5 and 20% DMSO showed the best in vitro release 74.13% at the end of 6 h.


Sign in / Sign up

Export Citation Format

Share Document