scholarly journals Evaluation of some growth promoting bacterial strains exist on Eggplant root Solanumm elongena L. against Rhizoctonia solani

2014 ◽  
Vol 8 (1) ◽  
pp. 14-19
Author(s):  
Waheed A. Q. Q. ◽  
H. R. Hassan ◽  
B. A. Abbas ◽  
H. H. Nawar

In this study, six plant growth promoting bacterial strains were tested against eggplant root rot disease caused by Rhizoctonia solani. The bacterial strains were evaluated for their ability to promote growth and control R. solani in eggplant under greenhouse conditions. The results of antagonistic activity of the bacterial strains against R. solani showed that the tested strains controlled the radial growth of R. solani ranging from 24.66 to 40.33 mm, of these, Bacillus subtilis was the most promising strains which recorded 24.66 mm. Results of the treatment eggplant seeds with the bacterial suspension of the six strains showed that all tested strains significantly increased the percentage of seeds germination as compared to control treatment, B. subtilis strain was the best which recorded 92.16% as compared to 69.56% for control treatment. The greenhouse experiment revealed that the plants treated with B. subtilis recorded maximum (Shoot length, root length, fresh and dry weight of plant, rate of fruits weight, plant productivity). All these parameters were increased by 93.83 cm, 26.50 cm, 589.30 g/ plant, 163.03 g/ plant, 101.63 g, 1180 g/ plant respectively, also the results showed B. subtilis significantly decreased disease incidence and severity of eggplant infected by R. solani which recorded 34.06, 0.23 respectively as compared to both positive without pathogen and negative with pathogen control treatment (4.4 %, 77.33), (0.07 %, 0.71) respectively.

2010 ◽  
Vol 56 (No. 12) ◽  
pp. 570-573 ◽  
Author(s):  
D. Egamberdieva

In this study the plant growth-promoting bacteria were analysed for their growth-stimulating effects on two wheat cultivars. The investigations were carried out in pot experiments using calcareous soil. The results showed that bacterial strains Pseudomonas spp. NUU1 and P. fluorescens NUU2 were able to colonize the rhizosphere of both wheat cultivars. Their plant growth-stimulating abilities were affected by wheat cultivars. The bacterial strains Pseudomonas sp. NUU1 and P. fluorescens NUU2 significantly stimulated the shoot and root length and dry weight of wheat cv. Turon, whereas cv. Residence was less affected by bacterial inoculation. The results of our study suggest that inoculation of wheat with Pseudomonas strains can improve plant growth in calcareous soil and it depends upon wheat cultivars. Prior to a selection of good bacterial inoculants, it is recommended to select cultivars that benefit from association with these bacteria.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Enriqueta Amora-Lazcano ◽  
Héctor J. Quiroz-González ◽  
Cristofer I. Osornio-Ortega ◽  
Juan A. Cruz-Maya ◽  
Janet Jan-Roblero

Background: Deficiency in sorghum growth in ecosystems of low-nutrient soils has been scarcely studied. This soil deficiency can be overcome by the addition of plant growth-promoting bacteria which increase sorghum growth. Questions and/or Hypotheses: indole acetic acid (IAA) producing and phosphate solubilizing bacteria can promote sorghum growth under nutritional stress. Studied species: Sorghum bicolor (L.) Moench. Study site and dates: Mexico City, 2018. Methods: Of the twelve bacterial strains utilized, three produce IAA (group BI), two strains produce IAA and siderophores (BIS group), four strains produce IAA and solubilize phosphate (BIP group), and three strains produce IAA, solubilize phosphate, and produce siderophores (BIPS group). Hydroponic bioassays and low-nutrient soil bioassay were used. Results: In hydroponic bioassays, for BI and BIS groups, five strains significantly increased the growth parameters with respect to the control, and for the BIP and BIPS groups, two strains promoted stem development and shoot dry weight. In a low-nutrient soil bioassay, Pseudomonas sp. BI-1 (from BI group) was the one that presented the highest percentages 32, 48, 140 and 79 % in stem diameter, height and dry weight of the shoot and dry weight of the root, respectively, followed by the P. mohnii BIPS-10 strain (from BIPS group) that exhibited similar results. Conclusions: IAA producing Pseudomonas strains improve the sorghum growth in a low-nutrient soil and suggest thatPseudomonas sp. BI-1 and P. mohnii BIPS-10 could be used as potential bioinoculants for sorghum.


2020 ◽  
Vol 25 (3) ◽  
pp. 388-395
Author(s):  
Andi Khaeruni ◽  
Tanza Nirmala ◽  
Waode Siti Anima Hisein ◽  
Gusnawaty Gusnawaty ◽  
Teguh Wijayanto ◽  
...  

This study aimed to obtain endophytic bacterial isolates originated from healthy cacao plant, potential for plant-growth promoting of cacao seedlings. This study was carried out in the Phytopathology Laboratory Unit of the Plant Protection Department, Faculty of Agriculture, Halu Oleo University. This study was conducted using a completely randomized design (CRD) using ten isolates of endophytic bacteria from healthy cocoa plants as treatments, plus a control treatment. The experiment was conducted in a screenhouse using seed treatment and planted in seedling boxes, containing sterile rice-husk charcoal as a growing medium. The result showed that  three endophytic bacteria tested (isolates 2RPR1, 2RWB2, and 5BRB3) were potential as plant growth-promoting of cocoa seedlings, because the isolates were able to increase seed germination up to 96.67%, relative growth rate up to 90-96.67%, increased plant height up to 47.85-67.17%, root dry weight up to 35.08-52.63%, and canopy dry weight up to 97.71-108.46%. The superiority of the three isolates were related to their abilities to fix nitrogen, dissolve phosphate, as well as to produce indole acetic acid.   Keywords: cacao, endophytic bacteria, plant growth-promoting agent, seed viability


2014 ◽  
Vol 32 (3) ◽  
pp. 149-154 ◽  
Author(s):  
R. Murphey Coy ◽  
David W. Held ◽  
Joseph W. Kloepper

Plant growth-promoting rhizobacteria (PGPR) are non-pathogenic, beneficial bacteria that colonize seeds and roots of plants and enhance plant growth. Although there has been extensive PGPR research with agronomic crops, there has been little emphasis on development of PGPR for grasses in pastures or as turf. Accordingly, experiments were conducted to evaluate novel bacterial inoculants for growth promotion in ‘Tifway’ hybrid bermudagrass. Replicated laboratory and greenhouse experiments evaluated effects of various PGPR mixtures, each with 3 to 5 PGPR strains and applied as weekly root inoculations, in comparison to nontreated plants. Growth promotion was assessed by measuring foliar growth from 3 to 8 wk and root growth at 8 wk after the first treatment. In all experiments, at least one bacterial treatment of bermudagrass resulted in significantly increased top growth and greater root growth (length, surface area, volume, or dry weight). PGPR blends 20 and MC3 caused the greatest growth promotion of roots and shoots. These results suggest that the bacterial strains could be used in strategies to reduce nitrogen or water inputs to turf.


2020 ◽  
Vol 50 (8) ◽  
Author(s):  
Elham Ahmed Kazerooni ◽  
Hanaa Al-Shibli ◽  
Abbas Nasehi ◽  
Abdullah Mohammed Al-Sadi

ABSTRACT: The study was performed to examine the potential presence of biological control agents against Pythium damping-off disease of cucumber.Examining eleven bacterial strains isolated from acid lime roots and rhizosphere soil showed that the bacterial strain RB1 was the most efficient in suppressing mycelial growth of P. aphanidermatum, producing an inhibition zone of 5mm. Scanning electron microscopy study of the mycelia at the interaction zone showed that the pathogen hyphae were deformed and shriveled by the bacterial strain.In pot experiments, pretreatment with the RB1 bacterial strain reduced disease incidence significantly by 63%.The bacterial strain did not exhibit any negative significant effects on cucumber growth (plant height and root dry weight) in comparison with untreated control under growth chamber conditions. Molecular identification of strain RB1 based on the 16S rRNA gene revealed that it is Enterobacter cloacae. Findings from this study suggested that E. cloacae has a potential to be used as a biocontrol agent for suppressingcucumber damping-off disease caused by P. aphanidermatum. This is the first report of the antagonistic activity of E. cloacae against P. aphanidermatum-induced damping-off of cucumber.


2020 ◽  
Vol 13 (2) ◽  
pp. 54-65 ◽  
Author(s):  
M.E.A. Bendaha ◽  
H.A. Belaouni

SummaryThis study aims to develop a biocontrol agent against Fusarium oxysporum f.sp. radicis-lycopersici (FORL) in tomato. For this, a set of 23 bacterial endophytic isolates has been screened for their ability to inhibit in vitro the growth of FORL using the dual plate assay. Three isolates with the most sound antagonistic activity to FORL have been qualitatively screened for siderophore production, phosphates solubilization and indolic acetic acid (IAA) synthesis as growth promotion traits. Antagonistic values of the three candidates against FORL were respectively: 51.51 % (EB4B), 51.18 % (EB22K) and 41.40 % (EB2A). Based on 16S rRNA gene sequence analysis, the isolates EB4B and EB22K were closely related to Enterobacter ludwigii EN-119, while the strain EB2A has been assigned to Leclercia adecarboxylata NBRC 102595. The promotion of tomato growth has been assessed in vitro using the strains EB2A, EB4B and EB22K in presence of the phytopathogen FORL. The treatments with the selected isolates increased significantly the root length and dry weight. Best results were observed in isolate EB4B in terms of growth promotion in the absence of FORL, improving 326.60 % of the root length and 142.70 % of plant dry weight if compared with untreated controls. In the presence of FORL, the strain EB4B improved both root length (180.81 %) and plant dry weight (202.15 %). These results encourage further characterization of the observed beneficial effect of Enterobacter sp. EB4B for a possible use as biofertilizer and biocontrol agent against FORL.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 894
Author(s):  
Emad M. Hafez ◽  
Hany S. Osman ◽  
Usama A. Abd El-Razek ◽  
Mohssen Elbagory ◽  
Alaa El-Dein Omara ◽  
...  

The continuity of traditional planting systems in the last few decades has encountered its most significant challenge in the harsh changes in the global climate, leading to frustration in the plant growth and productivity, especially in the arid and semi-arid regions cultivated with moderate or sensitive crops to abiotic stresses. Faba bean, like most legume crops, is considered a moderately sensitive crop to saline soil and/or saline water. In this connection, a field experiment was conducted during the successive winter seasons 2018/2019 and 2019/2020 in a salt-affected soil to explore the combined effects of plant growth-promoting rhizobacteria (PGPR) and potassium (K) silicate on maintaining the soil quality, performance, and productivity of faba bean plants irrigated with either fresh water or saline water. Our findings indicated that the coupled use of PGPR and K silicate under the saline water irrigation treatment had the capability to reduce the levels of exchangeable sodium percentage (ESP) in the soil and to promote the activity of some soil enzymes (urease and dehydrogenase), which recorded nearly non-significant differences compared with fresh water (control) treatment, leading to reinstating the soil quality. Consequently, under salinity stress, the combined application motivated the faba bean vegetative growth, e.g., root length and nodulation, which reinstated the K+/Na+ ions homeostasis, leading to the lessening or equalizing of the activity level of enzymatic antioxidants (CAT, POD, and SOD) compared with the controls of both saline water and fresh water treatments, respectively. Although the irrigation with saline water significantly increased the osmolytes concentration (free amino acids and proline) in faba bean plants compared with fresh water treatment, application of PGPR or K-silicate notably reduced the osmolyte levels below the control treatment, either under stress or non-stress conditions. On the contrary, the concentrations of soluble assimilates (total soluble proteins and total soluble sugars) recorded pronounced increases under tested treatments, which enriched the plant growth, the nutrients (N, P, and K) uptake and translocation to the sink organs, which lastly improved the yield attributes (number of pods plant−1, number of seeds pod−1, 100-seed weight). It was concluded that the combined application of PGPR and K-silicate is considered a profitable strategy that is able to alleviate the harmful impact of salt stress alongside increasing plant growth and productivity.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 912
Author(s):  
Shuming Liu ◽  
Hongmei Liu ◽  
Rui Chen ◽  
Yong Ma ◽  
Bo Yang ◽  
...  

Miscanthus spp. are energy plants and excellent candidates for phytoremediation approaches of metal(loid)s-contaminated soils, especially when combined with plant growth-promoting bacteria. Forty-one bacterial strains were isolated from the rhizosphere soils and roots tissue of five dominant plants (Artemisia argyi Levl., Gladiolus gandavensis Vaniot Houtt, Boehmeria nivea L., Veronica didyma Tenore, and Miscanthus floridulus Lab.) colonizing a cadmium (Cd)-contaminated mining area (Huayuan, Hunan, China). We subsequently tested their plant growth-promoting (PGP) traits (e.g., production of indole-3-acetic acid, siderophore, and 1-aminocyclopropane-1-carboxylate deaminase) and Cd tolerance. Among bacteria, two strains, Klebsiella michiganensis TS8 and Lelliottia jeotgali MR2, presented higher Cd tolerance and showed the best results regarding in vitro growth-promoting traits. In the subsequent pot experiments using soil spiked with 10 mg Cd·kg−1, we investigated the effects of TS8 and MR2 strains on soil Cd phytoremediation when combined with M. floridulus (Lab.). After sixty days of planting M. floridulus (Lab.), we found that TS8 increased plant height by 39.9%, dry weight of leaves by 99.1%, and the total Cd in the rhizosphere soil was reduced by 49.2%. Although MR2 had no significant effects on the efficiency of phytoremediation, it significantly enhanced the Cd translocation from the root to the aboveground tissues (translocation factor > 1). The combination of K. michiganensis TS8 and M. floridulus (Lab.) may be an effective method to remediate Cd-contaminated soils, while the inoculation of L. jeotgali MR2 may be used to enhance the phytoextraction potential of M. floridulus.


2015 ◽  
Vol 42 (8) ◽  
pp. 770 ◽  
Author(s):  
Saqib Saleem Akhtar ◽  
Mathias Neumann Andersen ◽  
Muhammad Naveed ◽  
Zahir Ahmad Zahir ◽  
Fulai Liu

The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover, in biochar-amended saline soil, strain FD17 performed significantly better than did PsJN in reducing [Na+]xylem. Our results suggested that inoculation of plants with endophytic baterial strains along with biochar amendment could be an effective approach for sustaining crop production in salt-affected soils.


Sign in / Sign up

Export Citation Format

Share Document