scholarly journals Research on the impact of diesel injection parameters on particulate matters emission in a dual-fuel supercharged engine fueled with natural gas

2018 ◽  
Vol 19 (12) ◽  
pp. 233-237
Author(s):  
Tomasz Skrzek ◽  
Grzegorz Jarzyński

The paper presents the results of research on dual-fuel, compression ignition engine, powered by natural gas. The main objective of the conducted research was to determine the impact of injection parameters initiating the ignition of a diesel oil dose, i.e.: the size and injection timing, on the emission of particulate matters. Studies have shown that when using a split of the diesel dose for the pilot and main dose, despite the significant (70%) share of natural gas in the mixture being combusted, the emission of particulate matters is comparable and even higher than that obtained on standard fuel. Previous studies of the dual-fuel engine showed that there is a clear need to divide the diesel dose into a pilot dose and the main dose. This division significantly affects the course of heat release, and at the same time is an effective method of reducing the maximum rate pressure rise, which allows increasing the share of gaseous fuel. From the point of view of particulate emissions, such division is counterproductive. The obtained results indicate that the values of pilot and main doses and their injection timing significantly affect the conditions of formation of particulate matters.

Author(s):  
Mohamed Y. E. Selim ◽  
M. S. Radwan ◽  
H. E. Saleh

The use of Jojoba Methyl Ester as a pilot fuel was investigated for almost the first time as a way to improve the performance of dual fuel engine running on natural gas or LPG at part load. The dual fuel engine used was Ricardo E6 variable compression diesel engine and it used either compressed natural gas (CNG) or liquefied petroleum gas (LPG) as the main fuel and Jojoba Methyl Ester as a pilot fuel. Diesel fuel was used as a reference fuel for the dual fuel engine results. During the experimental tests, the following have been measured: engine efficiency in terms of specific fuel consumption, brake power output, combustion noise in terms of maximum pressure rise rate and maximum pressure, exhaust emissions in terms of carbon monoxide and hydrocarbons, knocking limits in terms of maximum torque at onset of knocking, and cyclic data of 100 engine cycle in terms of maximum pressure and its pressure rise rate. The tests examined the following engine parameters: gaseous fuel type, engine speed and load, pilot fuel injection timing, pilot fuel mass and compression ratio. Results showed that using the Jojoba fuel with its improved properties has improved the dual fuel engine performance, reduced the combustion noise, extended knocking limits and reduced the cyclic variability of the combustion.


Author(s):  
Reed Hanson ◽  
Andrew Ickes ◽  
Thomas Wallner

Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection (DI) of a higher reactivity fuel, otherwise known as reactivity controlled compression ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13 l multicylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and DI of diesel fuel. Engine testing was conducted at an engine speed of 1200 rpm over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion (CDC) and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection (PFI) quantity was reduced to keep peak cylinder pressure (PCP) and maximum pressure rise rate (MPRR) under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar brake mean effective pressure (BMEP) with a peak brake thermal efficiency (BTE) of 47.6%.


Transport ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Maciej Mikulski ◽  
Sławomir Wierzbicki

Currently, one of the major trends in the research of contemporary combustion engines involves the potential use of alternative fuels. Considerable attention has been devoted to methane, which is the main component of Natural Gas (NG) and can also be obtained by purification of biogas. In compression-ignition engines fired with methane or Compressed Natural Gas (CNG), it is necessary to apply a dual-fuel feeding system. This paper presents the effect of the proportion of CNG in a fuel dose on the process of combustion. The recorded time series of pressure in a combustion chamber was used to determine the repeatability of the combustion process and the change of fuel compression-ignition delay in the combustion chamber. It has been showed that NG does not burn completely in a dual-fuel engine. The best conditions for combustion are ensured with higher concentrations of gaseous fuel. NG ignition does not take place simultaneously with diesel oil ignition. Moreover, if a divided dose of diesel is injected, NG ignition probably takes place at two points, as diesel oil.


2002 ◽  
Vol 3 (3) ◽  
pp. 171-184 ◽  
Author(s):  
S. R. Krishnan ◽  
M Biruduganti ◽  
Y Mo ◽  
S. R. Bell ◽  
K. C. Midkiff

The influence of engine operating variables on the performance, emissions and heat release in a compression ignition engine operating in normal diesel and dual-fuel modes (with natural gas fuelling) was investigated. Substantial reductions in NOx emissions were obtained with dual-fuel engine operation. There was a corresponding increase in unburned hydrocarbon emissions as the substitution of natural gas was increased. Brake specific energy consumption decreased with natural gas substitution at high loads but increased at low loads. Experimental results at fixed pilot injection timing have also established the importance of intake manifold pressure and temperature in improving dual-fuel performance and emissions at part load.


2019 ◽  
Vol 20 (10) ◽  
pp. 1059-1072 ◽  
Author(s):  
Metin Korkmaz ◽  
Dennis Ritter ◽  
Bernhard Jochim ◽  
Joachim Beeckmann ◽  
Dirk Abel ◽  
...  

In order to counteract the drawbacks of conventional diesel combustion, which can lead to high indicated specific nitric oxide and indicated specific particulate matter emissions, a promising diesel-dual-fuel concept is investigated and evaluated. In this study, methane is used as supplement to liquid diesel fuel due to its benefits like high knock resistance and clean combustion. A deep understanding of the in-cylinder process is required for engine design and combustion controller development. To investigate the impact of different input parameters such as injection duration, injection timing, and substitution rate on varying output parameters like load, combustion phasing, and engine-out emissions, numerous investigations were conducted. Engine speed, global equivalence ratio, and injection pressure were held constant. The experiments were carried out in a modified single-cylinder compression ignition engine. The results reveal regimes with different dependencies between injection timing of diesel fuel and combustion phasing. This work demonstrates the potential of the diesel-dual-fuel concept by combining sophisticated combustion control with the favorable combustion mode. Without employing exhaust gas recirculation, TIER IMO 3 emissions limits are met while ensuring high thermal efficiency.


Author(s):  
Reed Hanson ◽  
Andrew Ickes ◽  
Thomas Wallner

Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Engine testing was conducted at an engine speed of 1200 RPM over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection quantity was reduced to keep peak cylinder pressure and maximum pressure rise rate under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar BMEP with a peak brake thermal efficiency of 47.6%.


Author(s):  
Jiantong Song ◽  
Zhixin Feng ◽  
Jiangyi Lv ◽  
Hualei Zhang

Abstract The pilot diesel injection timing (θ) significantly affects the combustion and performance of dual-fuel (DF) engines. In order to optimize the θ of a natural gas-diesel DF engine, the influence of θ on combustion, cyclic variation, and performance of a diesel engine fueled with natural gas piloted by diesel under full load at 1200 rpm was investigated. The results indicate that, with the advance in θ, the cylinder pressure, rate of pressure rise (ROPR), and heat release rate (HRR) increase first and then decrease. The mean value of peak cylinder pressure (pmax) rises and the standard deviation increases first and then decreases. The distribution of the crank angle of peak cylinder pressure (φ(pmax)) scatters and approaches the top dead center. The coefficient of variation (COV) in pmax decreases first and then increases while the COV in φ(pmax) obviously increases. The brake power increases first and then decreases while the brake specific fuel consumption (b.s.f.c.) reduces first and then rises. The CO2 and NOx emissions rise first and then reduce while smoke emission decreases first and then increases, but the CO and HC rise.


Author(s):  
Jing Li ◽  
Wenming Yang ◽  
Hui An ◽  
Dezhi Zhou ◽  
Markus Kraft

In this study, dynamic ϕ-T map analysis was applied to an RCCI (reactivity controlled compression ignition) engine fueled with NG (natural gas) and diesel. The combustion process of the engine was simulated by coupled KIVA4-CHEMKIN with a DOS (diesel oil surrogate) chemical mechanism. The ϕ-T maps were constructed by the mole fractions of soot and NO obtained from SENKIN and ϕ-T conditions from engine simulations. Five parameters, namely NG fraction, 1st SOI (start of injection) timing, 2nd SOI timing, 2nd injection duration and EGR (exhaust gas recirculation) rate were varied in certain ranges individually, and the ϕ-T maps were compared and analyzed under various conditions. The results revealed how the five parameters would shift the ϕ-T conditions and influence the soot-NO contour. Among the factors, EGR rate could limit the highest temperature due to its dilute effect, hence maintaining RCCI combustion within LTC (low temperature combustion) region. The second significant parameter is the premixed NG fraction. It could set the lowest temperature; moreover, the tendency of soot formation can be mitigated due to the lessened fuel impingement and the absence of C-C bond. Finally, the region of RCCI combustion was added to the commonly known ϕ-T map diagram.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1342
Author(s):  
Van Chien Pham ◽  
Jae-Hyuk Choi ◽  
Beom-Seok Rho ◽  
Jun-Soo Kim ◽  
Kyunam Park ◽  
...  

This paper presents research on the combustion and emission characteristics of a four-stroke Natural gas–Diesel dual-fuel marine engine at full load. The AVL FIRE R2018a (AVL List GmbH, Graz, Austria) simulation software was used to conduct three-dimensional simulations of the combustion process and emission formations inside the engine cylinder in both diesel and dual-fuel mode to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were then compared and showed a good agreement with the measured values reported in the engine’s shop test technical data. The simulation results showed reductions in the in-cylinder pressure and temperature peaks by 1.7% and 6.75%, while NO, soot, CO, and CO2 emissions were reduced up to 96%, 96%, 86%, and 15.9%, respectively, in the dual-fuel mode in comparison with the diesel mode. The results also show better and more uniform combustion at the late stage of the combustions inside the cylinder when operating the engine in the dual-fuel mode. Analyzing the emission characteristics and the engine performance when the injection timing varies shows that, operating the engine in the dual-fuel mode with an injection timing of 12 crank angle degrees before the top dead center is the best solution to reduce emissions while keeping the optimal engine power.


Sign in / Sign up

Export Citation Format

Share Document