scholarly journals MATHEMATICAL MODELING IN THE STUDY OF ROUGHNESS AS APPLIED TO INTERNAL SURFACES

Author(s):  
Edward Zagidinovich Batmanov ◽  
Vladimir Pavlovich Bulgakov ◽  
Rasul Vagidovich Guseinov

The article considers the problems of mathematical modeling roughness of surfaces obtained in the cutting process. Roughness is related with the technological parameters of the system “machine-fixture-tool-workpiece” and the problem of fine finish of internal threads. There have been analyzed the existing mathematical models of finished surface roughness and stated the need to develop a mathematical model of internal surface roughness. There has been worked out a mathematical model of threaded profile roughness of the internal thread made by the tap in the details made from high-strength corrosion-resistant DI-8 grade steel that is popular in ship equipment building, by using methods of planning experiments. Geometric parameters of the tap cutting part have been taken as independent: angle of the intake cone, face and rear grinding angles. There have been listed parameters for qualitative evaluating and rating sharpened surfaces that are given in GOST 2789-73: altitudinal, step, profile bearing surface parameters. A mean-square deviation of microroughness profile was suggested to use as a roughness parameter. Impression method was used to evaluate roughness, light section device МИС-11 of V.P. Linnik was used to measure mold surface roughness. The method of planning experiments of predicting the roughness of internal surfaces has been found efficient. Theoretical studies are based on metal cutting methods, as well on methods of experiment planning with application of regression analysis; experimental research was conducted under laboratory conditions by using a computation machine. The research results allow to greatly improve the surface finish technologies in shipbuilding.

2013 ◽  
Vol 4 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Zs. Kun ◽  
I. G. Gyurika

Abstract The stone products with different sizes, geometries and materials — like machine tool's bench, measuring machine's board or sculptures, floor tiles — can be produced automatically while the manufacturing engineer uses objective function similar to metal cutting. This function can minimise the manufacturing time or the manufacturing cost, in other cases it can maximise of the tool's life. To use several functions, manufacturing engineers need an overall theoretical background knowledge, which can give useful information about the choosing of technological parameters (e.g. feed rate, depth of cut, or cutting speed), the choosing of applicable tools or especially the choosing of the optimum motion path. A similarly important customer's requirement is the appropriate surface roughness of the machined (cut, sawn or milled) stone product. This paper's first part is about a five-month-long literature review, which summarizes in short the studies (researches and results) considered the most important by the authors. These works are about the investigation of the surface roughness of stone products in stone machining. In the second part of this paper the authors try to determine research possibilities and trends, which can help to specify the relation between the surface roughness and technological parameters. Most of the suggestions of this paper are about stone milling, which is the least investigated machining method in the world.


2020 ◽  
pp. 55-57
Author(s):  
M.G. Galkin ◽  
A.S. Smagin ◽  
A.S. Pupyireva

An algorithm for the development of a mathematical model of cutting processing, as a multifactorial process, which determines the influence of significant parameters of the cutting mode on the roughness of the processed surface, is proposed. In the development of the algorithm, the method of extreme experimental design is used. Keywords cutting, mode, manufacturing process, surface roughness, mathematical model. [email protected]


Mechanik ◽  
2018 ◽  
Vol 91 (10) ◽  
pp. 898-900 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Monika Kulisz ◽  
Tomasz Warda

The purpose of this investigation was to determine whether and to what extent the technological parameters of turning (feed, cutting speed) affect selected surface roughness parameters of aluminum alloy EN-AW 7075 (AlZn5.5MgCu). The principal findings indicate a significant impact of feed and show on the surface roughness and simultaneously show that cutting speed has no effect on the value of surface roughness parameters under investigation. An artificial neural network was employed to evaluate the prediction of surface roughness parameter Rz in turning.


2020 ◽  
pp. 56-61
Author(s):  
A.M. Gafarov ◽  
H.V. Gafarzade

The possibilities of a new technological process — elastic rolling are considered. Modeling and optimization of the process were performed to ensure the minimum surface roughness of the treated surface. Keywords elastic rolling, surface roughness, parameter, modeling, optimization, part. [email protected]


2013 ◽  
Vol 764 ◽  
pp. 135-139 ◽  
Author(s):  
Dao Lin Wang

The handling of continuous chips in bulk can present a major problem in metal cutting. The controlling and breaking of chips is accomplished by a chip breaker. A reliable and practical chip controlling mathematical model was established after Chip breaking requirements and chip breaking grooves parameters being analyzed in this paper. The results can be important to practical on a variety of chip breakers and chip-breaking grooves parameters desig


2017 ◽  
Vol 1143 ◽  
pp. 180-187
Author(s):  
Marian Iulian Neacsu ◽  
Sorin Dobrovici

This paper presents the experiment-based mathematical modelling of fluidized bed carbonitriding process for 1C 25 steel meant to optimize this type of thermochemical processing.Based on experimental results, the mathematical model was developed, which is a second order equation with three unknown terms (parameters): temperature, depth of carbonitrided layer, the percentage of ammonia.The mathematical model allowed the simulation of the fluidized layer carbonitriding process according to its parameters and the thermal energy optimization for obtaining HV hardness values in the range 300-400 MPa.Using the software package Matlab a graphical interface was done, through which all the combinations of technological parameters of the carbonitriding process are determined, leading to obtaining values of microhardness between 300 and 400 MPa, as well as the amount of energy consumed for each variant. The variant consuming the lowest energy is considered optimal.


Author(s):  
І.Ш. Невлюдов ◽  
О.О. Чала ◽  
О.І. Филипенко ◽  
І.В. Боцман

The subject of the article is to establish the relationships between the parameters of formation the functional surfaces of the substrates of micro-opto-electro-mechanical systems’ (MOEMS) components and their physical and technological parameters. Objectives: to increase the reliability and reproducibility of the received information, reduce the complexity of the technological process of forming, by modeling the dependences of the ratios of physical and technological parameters of forming the functional surfaces of the substrates of MOEMS components for the forming process. The methods are used: methods of experiment planning and computer processing of experimental data, mathematical models, digital computer modeling of technological processes. The following results were obtained: a mathematical model was proposed, which was used to model the influence of physical and technological parameters of the functional surfaces of the substrates of MOEMS components on their formation, with the receipt of prototypes. The results can be used in the development of technological processes of production, as substrates of functional components of MOEMS, and other functional elements for various technological purposes. A mathematical model is obtained, which allows predicting the degree of influence of physical and technological parameters of the technological process on the parameters of formation of functional surfaces of substrates of MOEMS components. Conclusions. The scientific novelty of the results is as follows: a mathematical model that has found practical implementation for computer digital modeling in the development of technological processes for the production of functional surfaces of substrates of MOEMS components is proposed, in which, unlike the existing ones, it is possible to predict the degree of influence of physical substrates of MOEMS components, which allows to plan the process of formation, increase the reproducibility of results and reduce the complexity of the technological process.


2018 ◽  
Vol 224 ◽  
pp. 01025 ◽  
Author(s):  
Nikolay Nesterov ◽  
Boris Vorontsov

A detailed analysis of the process of filling the mould for lost foam casting technology was made based on a mathematical model, that takes into account the emergence of low-frequency oscillations. The optimum range of technological parameters for a few specific details were discovered. The factors that may lead to the release of metal and to mould collapse were also identified.


Author(s):  
R. M. Strelchuk ◽  
S. M. Trokhimchuk

Purpose. Research on the mechanism of influence of the straightening conditions of the grinding wheel, including the relative oscillations of the wheel and a multipoint diamond dresser, on the roughness of the ground surface and other machining results. Methodology. Straightening a grinding wheel with a multipoint diamond dresser is a process of high-speed destruction of a hard, abrasive material and its bond under the instantaneous forces, abrasive grains with a hard surface of a diamond crystal. During the grinding wheel straightening, the total component of normal forces causes correspondingly less elastic deformations in the wheel straightening tool system, which increases the accuracy of the geometric shape of the grinding wheel working surface. Findings. The research results make it possible to determine the parameters of the surface roughness of a workpiece and to find ways to control it to increase the efficiency of the grinding process. Originality. The regularities of the influence of the grinding wheel straightening conditions on the state of its working surface have been established. The paper shows that the initial arrangement of grains along the normal to the surface of the wheel is determined by its characteristics. When the abrasive grains hit the surface of the straightening tool, some of the vertices are chipped off, as a result of which the density of the grain vertices on the outer surface of the wheel increases. The straightening process was further developed in the direction of the non-uniform character of the location of the vertices of abrasive grains. The distribution of the grain position at the wheel bond depends on the straightening conditions. Since the removal of the allowance in the process of grinding is carried out by the most protruding grain vertices, then, consequently, the result of grinding will depend on their location and the conditions for the wheel straightening. Practical value. Application of the research results obtained in the work, namely, mathematical modeling of the surface roughness of the grinding wheel during straightening, makes it possible to calculate the roughness parameter of the ground surface. The work also shows that the level of chipping of the grain vertices depends on the grinding wheel straightening conditions, in particular, on the value of the axial feed of the straightening tool. In this case, lower stresses arise in the grains and the bond, and the tool works as a harder one. Straightening conditions affect the stability of the grinding wheel and its self-sharpening process in the machining zone. This determines the significant role of straightening in the results of the grinding process.


Author(s):  
Pawan Tyagi ◽  
Tobias Goulet ◽  
Nitt Chuenprateep ◽  
Robert Stephenson ◽  
Rudolph Knott ◽  
...  

Reducing surface roughness is critical for improving the mechanical properties of metal 3D printed components. As produced laser sintered metal 3D printed components suffer from high surface roughness. This problem is enormously big for the 3D printed components with intricate geometries involving a large internal surface area. To address this issue, we performed chemical polishing of the 3D printed 316 steel components. After 30 minutes of chemical polishing the color of 3D printed steel components’ surface became dull grey to bright lustrous. According to optical profilometer study, the surface morphology improved dramatically. The Rq roughness parameter changed from ∼8 um to ∼0.6 um. We also applied chemical polishing on cubical metal 3D printed components with internal surfaces. This surface finishing method was equally effective for the internal and external surfaces.


Sign in / Sign up

Export Citation Format

Share Document