scholarly journals Performance of High-k Dielectric Material for Short Channel Length MOSFET Simulated using Silvaco TCAD Tools

2021 ◽  
Vol 19 (OCT2021) ◽  
pp. 143-148
Author(s):  
Fatin Antasha Anizam ◽  
Lyly Nyl Ismail ◽  
Norsabrina Sihab ◽  
Nur Sa’adah Mohd Sauki
2002 ◽  
Vol 716 ◽  
Author(s):  
Krishna Kumar Bhuwalka ◽  
Nihar R. Mohapatra ◽  
Siva G. Narendra ◽  
V Ramgopal Rao

AbstractIt has been shown recently that the short channel performance worsens for high-K dielectric MOSFETs as the physical thickness to the channel length ratio increases, even when the effective oxide thickness (EOT) is kept identical to that of SiO2. In this work we have systematically evaluated the effective dielectric thickness for different Kgate to achieve targeted threshold voltage (Vt), drain-induced barrier lowering (DIBL) and Ion/Ioff ratio for different technology generations down to 50 nm using 2-Dimensional process and device simulations. Our results clearly show that the oxide thickness scaling for high-K gate dielectrics and SiO2 follow different trends and the fringing field effects must be taken into account for estimation of effective dielectric thickness when SiO2 is replaced by a high-K dielectric.


Author(s):  
Hakkee Jung ◽  
Byungon Kim

<span>The variation of the on-off current ratio is investigated when the asymmetrical junctionless double gate MOSFET is fabricated as a SiO<sub>2</sub>/high-k dielectric stacked gate oxide. The high dielectric materials have the advantage of reducing the short channel effect, but the rise of gate parasitic current due to the reduction of the band offset and the poor interface property with silicon has become a problem. To overcome this disadvantage, a stacked oxide film is used. The potential distributions are obtained from the Poission equation, and the threshold voltage is calculated from the second derivative method to obtain the on-current. As a result, this model agrees with the results from other papers. </span><span>The on-off current ratio is in proportion to the arithmetic average of the upper and lower high dielectric material thicknesses. The on-off current ratio of 10<sup>4</sup> or less is shown for SiO<sub>2</sub>, but the on-off current ratio for TiO<sub>2</sub> (<em>k</em>=80) increases to 10<sup>7</sup> or more.</span>


AIP Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 065229
Author(s):  
Yanxiao Sun ◽  
Gang Niu ◽  
Wei Ren ◽  
Jinyan Zhao ◽  
Yankun Wang ◽  
...  

2010 ◽  
Vol 87 (1) ◽  
pp. 47-50 ◽  
Author(s):  
E. Amat ◽  
T. Kauerauf ◽  
R. Degraeve ◽  
R. Rodríguez ◽  
M. Nafría ◽  
...  

2009 ◽  
Vol 45 (16) ◽  
pp. 821 ◽  
Author(s):  
K. Prashanthi ◽  
S.P. Duttagupta ◽  
R. Pinto ◽  
V.R. Palkar

2019 ◽  
Vol 5 (5) ◽  
pp. eaau9785 ◽  
Author(s):  
Sandhya Susarla ◽  
Thierry Tsafack ◽  
Peter Samora Owuor ◽  
Anand B. Puthirath ◽  
Jordan A. Hachtel ◽  
...  

Upcoming advancements in flexible technology require mechanically compliant dielectric materials. Current dielectrics have either high dielectric constant, K (e.g., metal oxides) or good flexibility (e.g., polymers). Here, we achieve a golden mean of these properties and obtain a lightweight, viscoelastic, high-K dielectric material by combining two nonpolar, brittle constituents, namely, sulfur (S) and selenium (Se). This S-Se alloy retains polymer-like mechanical flexibility along with a dielectric strength (40 kV/mm) and a high dielectric constant (K = 74 at 1 MHz) similar to those of established metal oxides. Our theoretical model suggests that the principal reason is the strong dipole moment generated due to the unique structural orientation between S and Se atoms. The S-Se alloys can bridge the chasm between mechanically soft and high-K dielectric materials toward several flexible device applications.


Sign in / Sign up

Export Citation Format

Share Document