scholarly journals Chromium Pillared Montmorillonite as Catalyst for Liquid Biofuel Conversion

2019 ◽  
Vol 7 (5) ◽  
Author(s):  
Robert Ronal Widjaya ◽  
Ariadne Laksmidevi Juwono ◽  
Nino Rinaldi

Indonesia has many natural resources, one of which is montmorillonite which very potential to be used as a catalyst in the process converting ethanol to biofuel for an alternative fuel. Montmorillonite has unique properties, because the structure can expand and contract. Research to find alternative energy was needed to replace the limited amount of fossil energy. Chromium metal can be used as catalyst by using montmorillonite as buffer catalyst material. The purpose of this research is to make Cr/montmorillonite catalyst, which was used in the process of converting ethanol to biofuel. Cr/montmorillonite catalyst has synthesised by pillarization method, because it is simple and feasible. The conversion process was carried out by using a fixed bed reactor, peristaltic pump for flow the ethanol with flow rate 1 ml/min, and 1.5g Cr/montmorillonite pellets. The Cr/montmorillonite result was increased the basal spacing in the interlayer montmorillonite amount 150%. TGA shows the results water molecules and hydroxyl compounds decomposition process of Cr/montmorillonite in temperature 631°C. The results of the BET analysis show the specific surface area increased from 30.35 m2/g to 146 m2/g. XRF analysis shows the element content in montmorillonite, that was indicated addition of Cr metals in montmorillonite. FTIR measurements shows that the functional groups in bentonite typical peaks are Mg-OH, Si-O-Si bonds. SEM shows changes in the surface morphology particle in montmorillonite, that is for Cr particles in the form of flake. The GC-MS analysis results show the conversion of ethanol to biofuel or gasoline or biofuel. 

2014 ◽  
Vol 695 ◽  
pp. 239-242
Author(s):  
K. Azduwin ◽  
Mohd Jamir Mohd Ridzuan ◽  
A.R. Mohamed ◽  
S.M. Hafis

Increasing demand of fossils fuel for many purposes has cause for the limited sources which lead to the finding for new alternative energy based on biomass because of its sustainable properties. Palm-pressed fibre (PPF) is the biomass waste from palm oil processing which has use minimally for boiler to generate heat. The pyrolysis of PPF in a fixed-bed reactor has the potential as an alternative for its conversion into bio-oil, bio-char and gas. The characterization of PPF where involves elemental analysis, proximate analysis, calorific analysis and component analysis. The pyrolysis of the PPF was performed in the fixed-bed reactor at temperature between 300 - 700 °C and heating rate in the range of 10-70 °C/min with constant flow of nitrogen at 100 cm3/min and 30 minutes hold time.The highest bio-oil yield produced was 44.98% at optimum temperature 500°C and heating rate 30°C/min. By analysis the bio-oil using Fourier transform infrared spectroscopy (FTIR), it was found to contains alkenes, ketones, polymeric hydroxyl compound, carboxylic acid, aldehyde and water.


2021 ◽  
Vol 1034 ◽  
pp. 199-205
Author(s):  
Dewi Selvia Fardhyanti ◽  
Megawati ◽  
Haniif Prasetiawan ◽  
Noniek Nabuasa ◽  
Mohammad Arik Ardianta

Biomass is a source of alternative energy that is environmentally friendly and very promising as one of the sources of renewable energy at present. The best candidate for the biomass waste for pyrolysis raw material is sugarcane bagasse. The sugarcane bagasse is a fibrous residue that is produced after crushing sugarcane for its extraction. Sugarcane bagasse is very potential to produce bio-oil through a pyrolysis process. The advantage of utilizing sugarcane bagasse is to reduce the amount of waste volume. Pyrolysis is a simple thermochemical conversion that transforms biomass with the near absence of absence of oxygen to produce fuel. Experiments were carried out on the fixed bed reactor. The analysis was carried out over a temperature range of 300-500 °C under atmospheric conditions. Products that are usually obtained from the pyrolysis process are bio-oil, char, and gas. Product analysis was performed using Gas Chromatography (GC) and Mass Spectrometry (MS) analysis. This research is aimed to study the kinetics of the sugarcane bagasse pyrolysis process to produce bio-oil. Three different models were proposed for the kinetic study and it was found that model III gave the best prediction on the calculation of pyrolysis process. From the calculation results, kinetic parameters which include activation energy (Ea) and the k factor (A) at a temperature of 300 °C is 2.4730 kJ/mol and 0.000335 s-1, at a temperature of 400 °C is 3, 2718 kJ/mol and 0.000563 s-1, and at a temperature of 500 °C is 4.8942 kJ/mol and 0.0009 s-1.


Author(s):  
Taye Stephen Mogaji ◽  
Emmanuel O. Moses ◽  
Emmanuel Tolulope Idowu ◽  
Tien-Chien Jen

Biochar has been proved to be effective in soil amelioration applications, carbon sequestration and also reduce GHG emissions which causes global warming. Biomass stands a greater chance of prevailing as a good source for the production of biochar, which in turn can be a solution for waste management. However, pyrolysis conditions for biochar production, together with feedstock characteristics largely control the physical and chemical properties of the yield biochar product. In this study, investigation on thermal degradation conditions effects on biochar production is carried out. Bio-char was produced using 35.3 litres fixed bed reactor from pyrolysis of Corn Cob (CC), Palm Kernel Shell (PKS) and Sugarcane Bagasse (SB) at temperatures ranging from 100°C to 500°C. The feedstock was also blended in ratio to each other and pyrolyzed to 250°C and 400°C. The analyzed results showed that higher pyrolysis temperatures resulted in lower bio-char mass recovery, higher ash contents, decreased fixed carbon and moisture content. Product characterization also showed that the produced biochar, independent of biomass waste type contained negligible amount of Sulphur (S) and Nitrogen which resulted in lower emission of SO2 and NO2 during the combustion process, this behaviour is observed to be more pronounced with the blended biochar samples investigated in this study as a result, the obtained bio-char product can be used directly for heating purposes. ANOVA test results for both volatile matter and Ash content of the produced biochar revealed that the P-value is greater than 0.01 independent of the biochar samples considered whereas for the fixed carbon of the same bio-char samples, P-value less than 0.01 is attained. These results show how control of biomass pyrolysis conditions can improve biochar chemical properties consequently biochar produced from biomass wastes could be a suitable candidate for alternative energy fuels in terms of quality and environment concern.


Author(s):  
Mohd Lukman Musa ◽  
Ramli Mat ◽  
Tuan Amran Tuan Abdullah

Bleaching earth is used to remove colour, phospholipids, oxidized products, metals and residual gums in the palm oil process refinery. Once adsorption process end, the spent bleaching earth (SBE) which contains approximately 20-40 wt. % of the adsorbed oil was usually disposed to landfills. The oil content in SBE was recovered by catalytic cracking using transition metal (Cu, Zn, Cr, and Ni) doped HZSM-5 zeolite in a batch reactor (pyrolysis zone) and fixed bed reactor (catalyst bed). The 5 wt. % of each metallic was introduced in HZSM-5 zeolite using incipient wetness impregnation method. The main objective of this study was to investigate the performance of modified HZSM-5 zeolite for cracking of residual oil in SBE. The physicochemical properties of the catalysts were characterized    using XRD, FTIR, Nitrogen adsorption, and TPD-NH3.  Liquid biofuel obtained from cracking was analyzed by GC-MS. The incorporation of metallic loaded on HZSM-5 zeolite has reduced the surface area of the catalyst that gives a significant impact to the catalytic behavior. The Ni/HZSM-5 zeolite exhibited the highest yields of alkenes as compared to others but slightly decreases the yield of alkanes whereas in contrast with the Cr/HZSM-5, the obtained alkanes were found higher than that of alkenes. In addition, the Cr/HZSM-5 and Ni/HZSM-5 favored the conversion of polycyclic aromatics to mono-aromatics, whereas parent HZSM-5 catalyst favored the formation of poly-aromatics. These results indicated that the metal loaded on HZSM-5 can promote the cracking of heavy fractions to lighter hydrocarbon thus can be used for cracking oil in SBE. Copyright © 2018 BCREC Group. All rights reservedReceived: 10th December 2017; Revised: 31st May 2018; Accepted: 10th June 2018How to Cite: Musa, M.L., Mat, R., Abdullah, T.A.T. (2018). Catalytic Conversion of Residual Palm Oil in Spent Bleaching Earth (SBE) By HZSM-5 Zeolite based-Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (3): 456-465 (doi:10.9767/bcrec.13.3.1929.456-465)Permalink/DOI: https://doi.org/10.9767/bcrec.13.3.1929.456-465 


Konversi ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Lukhi Mulia Shitophyta ◽  
Sarifa Kaisupy ◽  
Indah Puspita Sari

Tofu production produces by-products in the form of liquid waste and solid waste. Tofu liquid waste which contains organic compounds has not been able to be managed properly. Industry owners only disposed of wastes into the environment. It causes water pollution and unpleasant odors around the tofu industry. One of the solutions to reduce environmental pollution is to utilize tofu liquid waste as alternative energy, namely biogas. The management of tofu liquid waste into biogas for the household scale tofu industry can use a fixed bed reactor, batch scale anaerobic reactor, and anaerobic sludge blanket (UASB) up-flow reactor. The UASB reactor is the best reactor for processing tofu liquid waste into biogas on a household scale. The volume of biogas produced by the UASB reactor was 11.115 liters, while the volume of biogas produced by the fixed bed reactor and batch scale anaerobic digester reactor was 3.5 liters and 1.525 liters, respectively.


2021 ◽  
Vol 15 (1) ◽  
pp. 14
Author(s):  
Siti Jamilatun ◽  
Ratih Mahardhika ◽  
Imelda Eka Nurshinta ◽  
Lukhi Mulia Sithopyta

Currently, dependence on fossil energy, especially petroleum, is still high at 96% of the total consumption. One solution to overcome fossil energy consumption is processing alternative energy sources derived from microalgae biomass. This study aims to study the pyrolysis of microalgae with the addition of the C12-4 (Cr2O3+Fe2O3+C+CuO+promoter) catalyst. The biomass used in this study was Spirulina platensis residue (SPR). This study used a fixed bed reactor with an outer diameter of 44 mm, an inner diameter of 40 mm, and a total reactor height of 600 mm. The C12-4 was mixed fifty grams of SPR with a particle size of 100 mesh with a ratio variation of 5, 10, and 15 wt.%. The feed mixture was placed in the reactor (in-situ), and the reactor was tightly closed. The nickel-wire heater wrapped around the reactor wall was employed. The pyrolysis heating rate was  24.33 °C/min on average, and the temperatures were varied as 300, 400, 500, 550, and 600 °C. The research found that the optimum temperature conditions without and with the catalyst to produce bio-oil were different. The pyrolysis without any catalyst (500 ⁰C), with a catalyst of 5 wt.% (500 ⁰C), 10 wt.% (400 ⁰C), and 15 wt.% (550 ⁰C) produced the bio-oil yield of 15.00, 17.92, 16.78 and 16.54, respectively. The use of 5, 10, and 15 wt.% catalysts increased the water phase yield. The char yield was influenced by the amount of catalyst only at 300 ⁰C; i.e., the more catalysts, the less char yield. The pyrolysis without any catalysts produced the highest gas product. A catalyst significantly increased the pyrolysis conversion from 48.69 (without catalyst) to 62.46% (15. wt.% catalyst) at a temperature of 300 ⁰C. The optimum conditions for producing the best bio-oil were at 600 °C and 10 wt.% of catalysts, which resulted in an O/C ratio of 0.14.Keywords: C12-4 catalyst, in-situ catalytic pyrolysis, Spirulina platensis residue, yield bio-oilA B S T R A KKetergantungan terhadap energi fosil khususnya minyak bumi, saat ini masih tinggi yaitu mencapai 96% dari total konsumsi. Salah satu solusi untuk mengatasi ketergantungan energi fosil adalah dengan mengolah sumber energi yang berasal dari biomassa mikroalga. Penelitian ini bertujuan untuk pirolisis mikroalga dengan penambahan katalis C12-4 (Cr2O3 + Fe2O3 + C + CuO + promotor). Sampel yang digunakan adalah residu Spirulina platensis (SPR). Penelitian ini menggunakan reaktor unggun tetap dengan diameter luar 44 mm, diameter dalam 40 mm, dan tinggi reaktor 600 mm. Spirulina platensis dengan ukuran partikel 100 mesh sebanyak 50 gram dicampur dengan katalis C12-4 dengan variasi 5, 10, dan 15 wt.%. Campuran umpan (in-situ) dimasukkan ke dalam reaktor dan ditutup rapat. Pemanas menggunakan arus listrik melalui kawat nikel yang dililitkan pada dinding reaktor. Laju pemanasan pirolisis rata-rata 24,33 °C/menit, variasi suhu 300, 400, 500, 550, dan 600 °C. Kondisi optimum tanpa dan dengan katalis untuk menghasilkan bio-oil memiliki nilai yang berbeda yaitu pirolisis tanpa katalis (500 ⁰C), dengan katalis 5 wt.% (500 ⁰C), 10 wt.% (400 ⁰C) dan 15 wt.% (550 ⁰C) menghasilkan bio-oil 15,00; 17,92; 16,78; dan 16,54. Penggunaan katalis 5, 10, dan 15 wt.% berat dapat meningkatkan fasa air hasil. Yield char dipengaruhi oleh jumlah katalis hanya pada 300 ⁰C, semakin banyak katalis maka yield char semakin menurun. Pirolisis tanpa katalis menghasilkan produk gas tertinggi. Penggunaan katalis sangat signifikan dalam meningkatkan konversi pirolisis dari 48,69 (tanpa katalis) menjadi 62,46% (katalis 15 wt.%) pada suhu 300 ⁰C. Kondisi optimum untuk menghasilkan minyak nabati terbaik adalah pada 600 °C dengan katalis 10% berat, menghasilkan rasio O/C sebesar 0,14.Kata kunci: C12-4 catalyst, in-situ catalytic pyrolysis, Spirulina platensis residue, yield bio-oil


Sign in / Sign up

Export Citation Format

Share Document