scholarly journals The Effect of Infill Steel Plate Thickness on the Cycle Behavior of Steel Plate Shear Walls

2018 ◽  
Vol 11 (3) ◽  
pp. 7-13 ◽  
Author(s):  
Ali Sadik Abbas

The effect of changing in the bed slope of stilling basins produces changing in characteristics of the hydraulic jump such as sequent depth ratio, length of jump ratio, length of the roller and energy dissipation ratio, consequently the dimensions of stilling basin changed. In this study hydraulic jump investigated on smooth bed (without any appurtenances) for three adverse slopes (- 0.03, - 0.045, - 0.06) in addition to horizontal bed slope, the experiments were applied for the range of Froude number (Fr1) between 3.99 and 7.48. The results showed a reduction about10 % in sequent depth ratio, 22.1 % in length of jump ratio, 20.51 % in length of roller ratio and 13.87% in the energy dissipation ratio when the adverse slope (- 0.06) used instead of horizontal bed for the same Froude numbers. Empirical equations for the sequent depth ratio, length of roller ratio and the energy dissipation ratio were obtained from the experimental data

2018 ◽  
Vol 162 ◽  
pp. 03005
Author(s):  
Ali Abbas ◽  
Haider Alwash ◽  
Ali Mahmood

The construction of stilling basin with adverse slope change the characteristics of hydraulic jump such as sequent depth ratio, length of jump ratio, length of roller and energy dissipation ratio, consequently the dimensions of stilling basin are changed, also using baffle blocks with different configurations develop these characteristics. In this study different shapes of baffle block (models (A), (B), (C) and (D)) installed in the stilling basins at adverse slopes (- 0.03, - 0.045, - 0.06) in addition to horizontal bed, all these models are tested in the stilling basin to show their effects on the characteristics of hydraulic jump, the experiments applied for the range of Froude number (Fr1) between 3.99 and 7.48. The baffle block model (D) showed good results when compared with models (B) and (C), therefore it used with arrangement of (single and double row) and compared with baffle block model (A) at slopes (0, - 0.03, - 0.045, - 0.06) to study the effects of baffle blocks on hydraulic jump when bed slopes are changed. In general using baffle block caused a reduction in sequent depth ratio, length of jump ratio and the length of the roller, but the energy dissipation ratio increased.


2019 ◽  
Vol 8 (2) ◽  
pp. 5640-5645

This paper focuses on the hysteretic assessment of steel-concrete composite shear walls with reinforced concrete on one side of the steel plate. Finite element software ABAQUS is utilised to conduct this research. An experimental test on a composite shear wall is simulated to do the verification of the modelling. Then, modelling result is compared with the experimental test result which shows an insignificant difference between them and therefore uncovers the accuracy of the modelling. Thereafter, different parameters are considered to investigate their effects on the response of the walls. Thickness of reinforced concrete, steel plate thickness, and number of shear studs are studied as parameters. It is concluded that changing reinforced concrete thickness and number of shear studs do not considerably affect the ultimate load capacity, ductility, and energy dissipation of the walls. However, increasing the steel plate thickness enhances the ultimate load capacity, ductility, and energy dissipation. In addition, out-of-plane displacement of the walls is evaluated.


2019 ◽  
Vol 19 (8) ◽  
pp. 2240-2247
Author(s):  
Mohit Kumar ◽  
Sanjay Kumar ◽  
Sahil Bidhu

Abstract Hydraulic jump has numerous applications in the field of hydraulic engineering, such as energy dissipation over spillways, chlorinating of wastewater and many others. The sequent depth ratio is one of the important characteristics of hydraulic jump useful in designing the stilling basin. Despite its importance, the exact value of sequent depth ratio is still undetermined. In the present study an attempt has been made to find out the effects of roughness heights and slopes by conducting an experimental study and artificial neural network (ANN) model. Three different roughness heights of crushed and rounded aggregates and two positive bed slopes were used. The experimental results show that the reductions in sequent depth ratios are more in the case of crushed aggregate (4%–35%) than rounded on the same slope. By increasing bed slope, the sequent depth ratios show increasing trend in the range 3%–45%. The proposed ANN model has the capability to predict the sequent depth ratio with least MAPE (mean absolute percentage error) value 3.15%. Therefore, based on the results obtained from the empirical model and ANN model, it has been concluded that the present study can be better utilized for the estimation of the sequent depth ratio of hydraulic jump.


2021 ◽  
Vol 11 (7) ◽  
pp. 3275
Author(s):  
Majid Yaseri Gilvaee ◽  
Massood Mofid

This paper investigates the influence of an opening in the infill steel plate on the behavior of steel trapezoidal corrugated infill panels. Two specimens of steel trapezoidal corrugated shear walls were constructed and tested under cyclic loading. One specimen had a single rectangular opening, while the other one had two rectangular openings. In addition, the percentage of opening in both specimens was 18%. The initial stiffness, ultimate strength, ductility ratio and energy dissipation capacity of the two tested specimens are compared to a specimen without opening. The experimental results indicate that the existence of an opening has the greatest effect on the initial stiffness of the corrugated steel infill panels. In addition, the experimental results reveal that the structural performance of the specimen with two openings is improved in some areas compared to the specimen with one opening. To that end, the energy dissipation capacity of the specimen with two openings is obtained larger than the specimen with one opening. Furthermore, a number of numerical analyses were performed. The numerical results show that with increasing the thickness of the infill plate or using stiffeners around the opening, the ultimate strength of a corrugated steel infill panel with an opening can be equal to or even more than the ultimate strength of that panel without an opening.


2021 ◽  
pp. 136943322110542
Author(s):  
Mahdi Usefvand ◽  
Ahmad Maleki ◽  
Babak Alinejad

Coupled steel plate shear wall (C-SPSW) is one of the resisting systems with high ductility and energy absorption capacity. Energy dissipation in the C-SPSW system is accomplished by the bending and shear behavior of the link beams and SPSW. Energy dissipation and floor displacement control occur through link beams at low seismic levels, easily replaced after an earthquake. In this study, an innovative coupled steel plate shear wall with a yielding FUSE is presented. The system uses a high-ductility FUSE pin element instead of a link beam, which has good replaceability after the earthquake. In this study, four models of coupled steel plate shear walls were investigated with I-shaped link beam, I-shaped link beam with reduced beam section (RBS), box-link beam with RBS, and FUSE pin element under cyclic loading. The finite element method was used through ABAQUS software to develop the C-SPSW models. Two test specimens of coupled steel plate shear walls were validated to verify the finite element method results. Comparative results of the hysteresis curves obtained from the finite element analysis with the experimental curves indicated that the finite element model offered a good prediction of the hysteresis behavior of C-SPSW. It is demonstrated in this study that the FUSE pin can improve and increase the strength and energy dissipation of a C-SPSW system by 19% and 20%, respectively.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1758
Author(s):  
Juan Macián-Pérez ◽  
Francisco Vallés-Morán ◽  
Santiago Sánchez-Gómez ◽  
Marco De-Rossi-Estrada ◽  
Rafael García-Bartual

The study of the hydraulic jump developed in stilling basins is complex to a high degree due to the intense velocity and pressure fluctuations and the significant air entrainment. It is this complexity, bound to the practical interest in stilling basins for energy dissipation purposes, which brings the importance of physical modeling into the spotlight. However, despite the importance of stilling basins in engineering, bibliographic studies have traditionally focused on the classical hydraulic jump. Therefore, the objective of this research was to study the characteristics of the hydraulic jump in a typified USBR II stilling basin, through a physical model. The free surface profile and the velocity distribution of the hydraulic jump developed within this structure were analyzed in the model. To this end, an experimental campaign was carried out, assessing the performance of both, innovative techniques such as the time-of-flight camera and traditional instrumentation like the Pitot tube. The results showed a satisfactory representation of the free surface profile and the velocity distribution, despite some discussed limitations. Furthermore, the instrumentation employed revealed the important influence of the energy dissipation devices on the flow properties. In particular, relevant differences were found for the hydraulic jump shape and the maximum velocity positions within the measured vertical profiles, when compared to classical hydraulic jumps.


2012 ◽  
Vol 212-213 ◽  
pp. 821-825
Author(s):  
Keyvan Nasiri ◽  
Mohammad Reza Kavianpour ◽  
Siavash Haghighi

The principle of energy dissipation in stilling basin is based on hydraulic jump formation. Due to the inherent fluctuating characteristic of the hydraulic jump, basin floor is subjected to variations of pressure, resulting in unstableness due to uplift forces. To increase the efficiency of the stilling basins and improve the energy dissipation rate, one or two rows of baffle blocks are applied on the basin floor. Causing a forced hydraulic jump, tension and compression forces are exerted by pressure fluctuations of rotating roller zone of hydraulic jump. In this investigation, to observe the impacts of baffle blocks on pressure fluctuations on basin floor, a standard USBR basin model type III was constructed, and then a second row of blocks was added to the basin. A set of pressure tubes was fixed along the axis of the basin to measure the static and dynamic pressures on basin floor. The results were expressed in dimensionless parameters including C-p, C+p, C’p, Cp. Also, power spectra of pressure fluctuations were calculated. The results show a decreasing trend in root mean square of pressure fluctuations as distancing from toe of jump along the basin with and without baffle blocks. Also, mean pressure increases when water jet strokes the basin then decreases under roller zone of jump and increases again after sequent depth. The spectral analysis indicates that the dominant frequency is between 10 rad/s and 35 rad/s and pressure fluctuations have low frequency characteristics.


Author(s):  
Rollin H. Hotchkiss ◽  
Emily A. Larson ◽  
David M. Admiraal

Riprap and concrete stilling basins are often built at culvert outlets to keep high-energy flows from scouring the streambed. Two simple alternatives to large basins are examined: a horizontal apron with an end weir and a drop structure with an end weir. The two designs are intended to reduce the flow energy at the outlet by inducing a hydraulic jump within the culvert barrel without the aid of tailwater. This research examines the jump geometry and the effectiveness of each jump type and proposes a design procedure for practicing engineers. The design procedure is applicable to culverts with approach Froude numbers from 2.6 to 6.0. Both designs are effective in reducing outlet velocity 0.7 to 8.5 ft/s (0.21 to 2.59 m/s), momentum 10% to 48%, and energy 6% to 71%. The design layouts allow easy access for maintenance activities.


2012 ◽  
Vol 193-194 ◽  
pp. 1470-1475 ◽  
Author(s):  
Marco Valente

This study investigates an innovative method based on low yield steel plate shear walls for seismic retrofitting of existing reinforced concrete (R/C) structures. A simplified numerical model of steel shear panels is developed for global analyses of multi-story R/C frames. The seismic performance of a non-ductile five-story R/C frame retrofitted with steel plate shear walls is evaluated in terms of drift control and energy dissipation capacity using nonlinear dynamic analyses. The results obtained by the application of two different story-wise distributions of steel plates are compared. In case of retrofitted frames a considerable decrease of the maximum top displacements is registered and the energy dissipated by the primary structural elements is significantly reduced for severe seismic actions. The energy dissipation concentrates in the steel panels, reducing the plastic demand on the structural members, along with the potential for structural damage. The different story-wise distributions of the steel panels change the damage distribution throughout the frame. The uniform arrangement of the steel panel thickness along the height of the frame causes a concentration of damage in the columns of the first story. In case of steel panel distribution proportional to story shear, the energy dissipation results more uniform over the height of the frame and a significant decrease of damage is registered for the columns of all the storeys.


Sign in / Sign up

Export Citation Format

Share Document