scholarly journals Row Cover Management of Field-Grown Cercis canadensis and Lagerstroemia (indica x fauriei) ‘Muskogee’

1994 ◽  
Vol 12 (2) ◽  
pp. 71-75
Author(s):  
Steven E. Newman ◽  
Leila P. Baldridge

Abstract Field-grown Cercis canadensis and Lagerstroemia (indica x fauriei) ‘Muskogee’ with or without trickle irrigation and three row cover management systems, including a summer leguminous cover crop, pine bark mulch or bare cultivation, were evaluated. Cercis plants grown with lespedeza clover as a row cover had less plant growth than those bare cultivated or mulched with pine bark, even with supplemental irrigation. Mulched plots exhibited higher stomatal conductance rates attributable to high canopy temperatures. Lagerstroemia plants with no cover grew as well as those with a cover of mulch or clover, when sufficient water was available from either rainfall or irrigation. Clover interplantings decreased the height and number of branches in Lagerstroemia without supplemental irrigation, but did not affect the water relations significantly.

HortScience ◽  
1990 ◽  
Vol 25 (8) ◽  
pp. 849d-849
Author(s):  
L.P. Baldridge ◽  
S.E. Newman

Most field production of woody ornamental plants involves clean cultivation of rows, performed by either mechanical or chemical means. Grass cover has been shown to reduce erosion, but may have a detrimental effect on the growth and vigor of young trees. Clover cover has been shown to not adversely affect plant growth. The objective of this study was to compare the relative merits of three row covers, clean cultivated, pine bark mulch and kobe lespedeza clover, in combination with two irrigation rates, low and high, on field-grown red bud and crape myrtle plants. Crape myrtle and red bud plants were tallest and had a larger caliper when grown with a clean row or with pine bark mulch. Kobe lespedeza clover reduced plant growth of both species when supplemental irrigation was not provided. Clover reduced plant height and caliper of red bud even when irrigated. Generally, plants grown under pine bark mulch were more efficient in water use as shown by greater stomatal conductance in August.


1988 ◽  
Vol 6 (3) ◽  
pp. 96-100 ◽  
Author(s):  
S.E. Newman ◽  
M.W. Follett

Trickle irrigation frequency, shading, water relations, and plant growth of container-grown Euonymus japonica Thunb. ‘Aureomarginata’ was investigated. Plants were grown under a combination of 3 irrigation frequencies and 2 shade levels. Stomatal conductance (gs) was reduced when plants were irrigated 3 times per week compared to irrigation daily and twice daily after week 4 under full sun and after week 8 under shade. Few differences were detected in predawn shoot water potential (Ψshoot) under shade at any irrigation level. The predawn shoot water potential (Ψshoot) was reduced (rnore negative) for plants irrigated 3 times per week compared to irrigation daily and twice daily after week 8 for plants grown under full sun and week 10 for plants grown under shade. These values remained lower for the duration of the study. Plants grown under shade and irrigated once daily had greater plant dry weight and leaf area compared to plants irrigated either twice daily or 3 times per week. They were also larger than all plants grown under full sun. Plants grown under shade had greater chlorophyll levels per unit leaf area. Under shade, plant quality was not affected by irrigation rates. However, only plants grown under shade were of salable quality.


1999 ◽  
Vol 34 (7) ◽  
pp. 1151-1157
Author(s):  
Adaucto Bellarmino de Pereira-Netto ◽  
Antonio Celso Novaes de Magalhães ◽  
Hilton Silveira Pinto

Tropical kudzu (Pueraria phaseoloides (Roxb.) Benth., Leguminosae: Faboideae) is native to the humid Southeastern Asia. Tropical kudzu has potential as a cover crop in regions subjected to dryness. The objective of this paper was to evaluate the effect of soil water depletion on leaflet relative water content (RWC), stomatal conductance (g) and temperature (T L) in tropical kudzu. RWC of waterstressed plants dropped from 96 to 78%, following a reduction in SWC from 0.25 to 0.17 g (H2O).g (dry soil)-1.Stomatal conductance of stressed plants decreased from 221 to 98 mmol.m-2.s-1, following the reduction in soil water content (SWC). The day after re-irrigation, g of water stressed plants was 15% lower than g of unstressed plants. Differences in T L between waterstressed and unstressed plants (deltaT L) rose linearly from 0.1 to 2.2ºC following progressive water deficit. RWC and T L of waterstressed plants paralled RWC and T L of unstressed plants the day after reirrigation. The strong decrease in SWC found in this study only induced moderate water stress in tropical kudzu. In addition, tropical kudzu recover rapidly from the induced water stress after the re-irrigation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260960
Author(s):  
Muhammad Mahran Aslam ◽  
Fozia Farhat ◽  
Mohammad Aquil Siddiqui ◽  
Shafquat Yasmeen ◽  
Muhammad Tahir Khan ◽  
...  

Environmental stresses may alter the nutritional profile and economic value of crops. Chemical fertilizers and phytohormones are major sources which can enhance the canola production under stressful conditions. Physio-biochemical responses of canola altered remarkably with the use of nitrogen/phosphorus/potassium (N/P/K) fertilizers and plant growth regulators (PGRs) under drought stress. The major aim of current study was to evaluate nutritional quality and physio-biochemical modulation in canola (Brassica napus L.) from early growth to seed stage with NPK and PGRs in different water regimes. To monitor biochemical and physiological processes in canola, two season field experiment was conducted as spilt plot under randomized complete block design (RCBD) with four treatments (Control, Chemical fertilizers [N (90 kg/ha), P and K (45 kg ha-1)], PGRs; indole acetic acid (IAA) 15g ha-1, gibberellic acid (GA3) 15g ha-1 and the combination of NPK and PGRs] under different irrigations regimes (60, 100, 120, 150 mm evaporations). Water stress enhanced peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), polyphenol oxidase (PPO), soluble sugar, malondialdehyde (MDA), proline contents as well as leaf temperature while substantially reduced leaf water contents (21%), stomatal conductance (50%), chlorophyll contents (10–67%), membrane stability index (24%) and grain yield (30%) of canola. However, the combined application of NPK and PGR further increased the enzymatic antioxidant pool, soluble sugars, along with recovery of leaf water contents, chlorophyll contents, stomatal conductance and membrane stability index but decreased the proline contents and leaf temperature at different rate of evaporation. There is positive interaction of applied elicitors to the water stress in canola except leaf area. The outcomes depicted that the combination of NPK with PGRs improved the various morpho-physiological as well as biochemical parameters and reduced the pressure of chemical fertilizers cost about 60%. It had also reduced the deleterious effect of water limitation on the physiology and grain yield and oil contents of canola in field experiments.


2004 ◽  
Vol 136 (2) ◽  
pp. 3134-3147 ◽  
Author(s):  
Bruno Ruggiero ◽  
Hisashi Koiwa ◽  
Yuzuki Manabe ◽  
Tanya M. Quist ◽  
Gunsu Inan ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 504 ◽  
Author(s):  
Abou Chehade ◽  
Antichi ◽  
Martelloni ◽  
Frasconi ◽  
Sbrana ◽  
...  

No-till practices reduce soil erosion, conserve soil organic carbon, and enhance soil fertility. Yet, many factors could limit their adoption in organic farming. The present study investigated the effects of tillage and cover cropping on weed biomass, plant growth, yield, and fruit quality of an organic processing tomato (Solanum lycopersicon L. var. Elba F1) over two seasons (2015–2017). We compared systems where processing tomato was transplanted on i) tilled soil following or not a winter cover crop (Trifolium squarrosum L.) and with/without a biodegradable plastic mulch; and ii) no-till where clover was used, after rolling and flaming, as dead mulch. Tomato in no-till suffered from high weed competition and low soil nitrogen availability leading to lower plant growth, N uptake, and yield components with respect to tilled systems. The total yield in no-till declined to 6.8 and 18.3 t ha−1 in 2016 and 2017, respectively, with at least a 65% decrease compared to tilled clover-based systems. No evidence of growth-limiting soil compaction was noticed but a slightly higher soil resistance was in the no-till topsoil. Tillage and cover crop residues did not significantly change tomato quality (pH, total soluble solids, firmness). The incorporation of clover as green manure was generally more advantageous over no-till. This was partly due to the low performance of the cover crop where improvement may limit the obstacles (i.e., N supply and weed infestation) and enable the implementation of no-till in organic vegetable systems.


Sign in / Sign up

Export Citation Format

Share Document