scholarly journals Síntesis de una membrana con líquido iónico de tercera generación, su evaluación en separación de CO2 y su captura en un cultivo hidropónico

2016 ◽  
Author(s):  
◽  
Cinthia Erika Sánchez-Fuentes

In the present research work, four membranes supported with ionic liquids (SILMs) were synthesized to be evaluated in the CO2 separation from the CO2/N2 mixture. As for the ionic liquids, two of them were functionalized with an amino group at the cationic part, 1-(2-aminoethyl)-3-methylimidazolium triflate ([AEMIm]Tf) and 1-(2-aminoethyl)-3-methylimidazolium tetrafluoroborate ([AEMIm]BF4), the third and fourth ionic liquids possessed the amino group at the anionic part, trioctylmethylammonium anthranilate ([TOMA]An) and triethylmethylammonium oleate ([TOMA]Ol). The chemical structure of the ionic liquids was confirmed by nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopies; the thermal properties were studied by thermogravimetric analysis (TGA) and density was measured with a pycnometer. The impregnation degree and distribution of the ionic liquids in an alumina tubular support were established by means of scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX). The transport properties of the gases were evaluated by the variable volume method using pure gases and their mixtures with a 50/50 volumetric ratio at 30 °C and 1, 2 and 3 bar. The SILM [TOMA]An showed the highest selectivity (70) and the best permselectivity balance, surpassing the limits in the Robeson plot. The SILMs with amino groups reacted with CO2 to obtain the carbamate chemical group. The thermal stability and infrared studies suggest that this group is stable even after the beginning of the decomposition process of the ionic liquid. In order to provide an added value to the use of CO2, a lettuce hydroponic greenhouse was enriched with this gas, observing an accelerated growing effect.

1998 ◽  
Vol 63 (2) ◽  
pp. 211-221 ◽  
Author(s):  
Miloš Tichý ◽  
Luděk Ridvan ◽  
Miloš Buděšínský ◽  
Jiří Závada ◽  
Jaroslav Podlaha ◽  
...  

The axially chiral bis(α-amino acid)s cis-2 and trans-2 as possible building blocks for polymeric structures of novel type of helicity were prepared. Their configuration has been determined by NMR spectroscopy and, in the case of the trans-isomer, confirmed by single-crystal X-ray diffraction. Analogous pair of stereoisomeric diacids cis-3 and trans-3, devoid of the amino groups, was also prepared and their configuration assigned. The observed differences in the NMR spectra of cis- and trans-isomers of 2 and 3 are discussed from the viewpoint of their different symmetry properties.


2021 ◽  
Vol 10 (1) ◽  
pp. 189-200
Author(s):  
Yuan She ◽  
Chong Zou ◽  
Shiwei Liu ◽  
Keng Wu ◽  
Hao Wu ◽  
...  

Abstract Thermoanalysis was used in this research to produce a comparative study on the combustion and gasification characteristics of semi-coke prepared under pyrolytic atmospheres rich in CH4 and H2 at different proportions. Distinctions of different semi-coke in terms of carbon chemical structure, functional groups, and micropore structure were examined. The results indicated that adding some reducing gases during pyrolysis could inhibit semi-coke reactivity, the inhibitory effect of the composite gas of H2 and CH4 was the most observable, and the effect of H2 was higher than that of CH4; moreover, increasing the proportion of reducing gas increased its inhibitory effect. X-ray diffractometer and Fourier-transform infrared spectrometer results indicated that adding reducing gases in the atmosphere elevated the disordering degree of carbon microcrystalline structures, boosted the removal of hydroxyl- and oxygen-containing functional groups, decreased the unsaturated side chains, and improved condensation degree of macromolecular networks. The nitrogen adsorption experiment revealed that the types of pore structure of semi-coke are mainly micropore and mesopore, and the influence of pyrolytic atmosphere on micropores was not of strong regularity but could inhibit mesopore development. Aromatic lamellar stack height of semi-coke, specific surface area of mesopore, and pore volume had a favorable linear correlation with semi-coke reactivity indexes.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1940 ◽  
Author(s):  
Levente Ferenc Tóth ◽  
Patrick De Baets ◽  
Gábor Szebényi

In this research work, unfilled and mono-filled polytetrafluoroethylene (PTFE) materials were developed and characterised by physical, thermal, viscoelastic, mechanical, and wear analysis. The applied fillers were graphene, alumina (Al2O3), boehmite alumina (BA80), and hydrotalcite (MG70) in 0.25/1/4/8 and 16 wt % filler content. All samples were produced by room temperature pressing–free sintering method. All of the fillers were blended with PTFE by intensive dry mechanical stirring; the efficiency of the blending was analysed by Energy-dispersive X-ray spectroscopy (EDS) method. Compared to neat PTFE, graphene in 4/8/16 wt % improved the thermal conductivity by ~29%/~84%/~157%, respectively. All fillers increased the storage, shear and tensile modulus and decreased the ductility. PTFE with 4 wt % Al2O3 content reached the lowest wear rate; the reduction was more than two orders of magnitude compared to the neat PTFE.


1995 ◽  
Vol 73 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Raul G. Enriquez ◽  
Juan M. Fernandez-G ◽  
Ismael Leon ◽  
William F. Reynolds ◽  
Ji.-Ping Yang ◽  
...  

The Schiff base condensation reaction of 1,2-diaminoethane with a series of 2-acetylcycloalkanones (from cyclopentanone to cyclooctanone) has been investigated and the products characterized by two-dimensional nuclear magnetic resonance. The site of attack of the amino groups, i.e., ring ketone or acetyl ketone, is determined primarily by ring size. 2-Acetylcyclohexanone yields two products in ca. 9:1 ratio, the major product where the two amino groups attack at the ring ketones of two different cyclohexanone molecules, and the minor product where one amino group attacks one ring carbonyl of one cyclohexanone while the second amino group attacks the acetyl group of another. 2-Acetylcyclopentanone yields all three possible products with the major product involving attack at the acetyl groups of two different cyclopentanones. The corresponding reactions for 2-acetylcycloheptanone and 2-acetylcyclooctanone each give a single product corresponding to attack at the acetyl groups of two different cycloalkanones. Similar product distributions are observed for the reactions of the different 2-acetylcycloalkanones with 1,4-diaminobutane. Keywords: Schiff base reactions, diketones, 2D NMR.


2014 ◽  
Vol 47 (6) ◽  
pp. 1882-1888 ◽  
Author(s):  
J. Hilhorst ◽  
F. Marschall ◽  
T. N. Tran Thi ◽  
A. Last ◽  
T. U. Schülli

Diffraction imaging is the science of imaging samples under diffraction conditions. Diffraction imaging techniques are well established in visible light and electron microscopy, and have also been widely employed in X-ray science in the form of X-ray topography. Over the past two decades, interest in X-ray diffraction imaging has taken flight and resulted in a wide variety of methods. This article discusses a new full-field imaging method, which uses polymer compound refractive lenses as a microscope objective to capture a diffracted X-ray beam coming from a large illuminated area on a sample. This produces an image of the diffracting parts of the sample on a camera. It is shown that this technique has added value in the field, owing to its high imaging speed, while being competitive in resolution and level of detail of obtained information. Using a model sample, it is shown that lattice tilts and strain in single crystals can be resolved simultaneously down to 10−3° and Δa/a= 10−5, respectively, with submicrometre resolution over an area of 100 × 100 µm and a total image acquisition time of less than 60 s.


2018 ◽  
Vol 36 (5) ◽  
pp. 436-444 ◽  
Author(s):  
Xue Zhang ◽  
Hengxiang Li ◽  
Qing Cao ◽  
Li’e Jin ◽  
Fumeng Wang

The managing and recycling of waste tires has become a worldwide environmental challenge. Among the different disposal methods for waste tires, pyrolysis is regarded as a promising route. How to effectively enhance the added value of pyrolytic residue (PR) from waste tires is a matter of great concern. In this study, the PRs were treated with hydrochloric and hydrofluoric acids in turn under ultrasonic waves. The removal efficiency for the ash and sulfur was investigated. The pyrolytic carbon black (PCB) obtained after treating PR with acids was analyzed by X-ray fluorescence spectrophotometry, Fourier transform infrared spectrometry, X-ray diffractometry, laser Raman spectrometry, scanning electron microscopy, thermogravimetric (TG) analysis, and physisorption apparatus. The properties of PCB were compared with those of commercial carbon black (CCB) N326 and N339. Results showed PRs from waste tires were mainly composed of carbon, sulfur, and ash. The carbon in PCB was mainly from the CCB added during tire manufacture rather than from the pyrolysis of pure rubbers. The removal percentages for the ash and sulfur of PR are 98.33% (from 13.98 wt % down to 0.24 wt %) and 70.16% (from 1.81 wt % down to 0.54 wt %), respectively, in the entire process. The ash was mainly composed of metal oxides, sulfides, and silica. The surface properties, porosity, and morphology of the PCB were all close to those of N326. Therefore, PCB will be a potential alternative of N326 and reused in tire manufacture. This route successfully upgrades PR from waste tires to the high value-added CCB and greatly increases the overall efficiency of the waste tire pyrolysis industry.


2011 ◽  
Vol 89 (8) ◽  
pp. 971-977
Author(s):  
Danielle M. Chisholm ◽  
Robert McDonald ◽  
J. Scott McIndoe

Methylation of aromatic amino groups is usually straightforward, but the formation of two intramolecular hydrogen bonds in 3,3′-N,N′-bis(amino)-2,2′-bipyridine and (or) the potential for ring methylation prevents the clean tetramethylation of this molecule. Numerous attempts to make 3,3′-N,N′-bis(dimethylamino)-2,2′-bipyridine produced only complex mixtures of variously methylated products, and the only isolated molecule was 3,3′-N,N′-bis(methylamino)-2,2′-bipyridine, for which an X-ray crystal structure was obtained.


2015 ◽  
Vol 17 (27) ◽  
pp. 17838-17843 ◽  
Author(s):  
Kenta Fujii ◽  
Shinji Kohara ◽  
Yasuhiro Umebayashi

A new function, SQpeak(r); a connection between low-Q peak intensity with real space structure.


Sign in / Sign up

Export Citation Format

Share Document