Psychology of Computer Use: XLVI. Age-Related Differences in the Mapping of Auditory Icons to Visual Icons in Computer Interfaces for Children

1997 ◽  
Vol 84 (3_suppl) ◽  
pp. 1223-1233 ◽  
Author(s):  
Julie A. Jacko ◽  
David J. Rosenthal

An investigation was conducted to characterize how children ages 6 through 9 identify auditory icons present in educational software. 24 subjects were required to map auditory icons to visual icons, both present in a computer interface. The interface used in the experiment was constructed with Visual Basic and involved 40 auditory icons, 40 corresponding visual icons, and 66 extraneous visual icons. It was hypothesized that older children would be better able to map the auditory icons to visual icons due to more extensive exposure to everyday sounds. The results supported the hypothesis and suggestions for additional research were provided.

Author(s):  
Wakana Ishihara ◽  
Karen Moxon ◽  
Sheryl Ehrman ◽  
Mark Yarborough ◽  
Tina L. Panontin ◽  
...  

This systematic review addresses the plausibility of using novel feedback modalities for brain–computer interface (BCI) and attempts to identify the best feedback modality on the basis of the effectiveness or learning rate. Out of the chosen studies, it was found that 100% of studies tested visual feedback, 31.6% tested auditory feedback, 57.9% tested tactile feedback, and 21.1% tested proprioceptive feedback. Visual feedback was included in every study design because it was intrinsic to the response of the task (e.g. seeing a cursor move). However, when used alone, it was not very effective at improving accuracy or learning. Proprioceptive feedback was most successful at increasing the effectiveness of motor imagery BCI tasks involving neuroprosthetics. The use of auditory and tactile feedback resulted in mixed results. The limitations of this current study and further study recommendations are discussed.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dheeraj Rathee ◽  
Haider Raza ◽  
Sujit Roy ◽  
Girijesh Prasad

AbstractRecent advancements in magnetoencephalography (MEG)-based brain-computer interfaces (BCIs) have shown great potential. However, the performance of current MEG-BCI systems is still inadequate and one of the main reasons for this is the unavailability of open-source MEG-BCI datasets. MEG systems are expensive and hence MEG datasets are not readily available for researchers to develop effective and efficient BCI-related signal processing algorithms. In this work, we release a 306-channel MEG-BCI data recorded at 1KHz sampling frequency during four mental imagery tasks (i.e. hand imagery, feet imagery, subtraction imagery, and word generation imagery). The dataset contains two sessions of MEG recordings performed on separate days from 17 healthy participants using a typical BCI imagery paradigm. The current dataset will be the only publicly available MEG imagery BCI dataset as per our knowledge. The dataset can be used by the scientific community towards the development of novel pattern recognition machine learning methods to detect brain activities related to motor imagery and cognitive imagery tasks using MEG signals.


2020 ◽  
Vol 16 (2) ◽  
Author(s):  
Stanisław Karkosz ◽  
Marcin Jukiewicz

AbstractObjectivesOptimization of Brain-Computer Interface by detecting the minimal number of morphological features of signal that maximize accuracy.MethodsSystem of signal processing and morphological features extractor was designed, then the genetic algorithm was used to select such characteristics that maximize the accuracy of the signal’s frequency recognition in offline Brain-Computer Interface (BCI).ResultsThe designed system provides higher accuracy results than a previously developed system that uses the same preprocessing methods, however, different results were achieved for various subjects.ConclusionsIt is possible to enhance the previously developed BCI by combining it with morphological features extraction, however, it’s performance is dependent on subject variability.


2018 ◽  
Vol 8 (11) ◽  
pp. 199 ◽  
Author(s):  
Rodrigo Ramele ◽  
Ana Villar ◽  
Juan Santos

The Electroencephalography (EEG) is not just a mere clinical tool anymore. It has become the de-facto mobile, portable, non-invasive brain imaging sensor to harness brain information in real time. It is now being used to translate or decode brain signals, to diagnose diseases or to implement Brain Computer Interface (BCI) devices. The automatic decoding is mainly implemented by using quantitative algorithms to detect the cloaked information buried in the signal. However, clinical EEG is based intensively on waveforms and the structure of signal plots. Hence, the purpose of this work is to establish a bridge to fill this gap by reviewing and describing the procedures that have been used to detect patterns in the electroencephalographic waveforms, benchmarking them on a controlled pseudo-real dataset of a P300-Based BCI Speller and verifying their performance on a public dataset of a BCI Competition.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sanghum Woo ◽  
Jongmin Lee ◽  
Hyunji Kim ◽  
Sungwoo Chun ◽  
Daehyung Lee ◽  
...  

Brain–computer interfaces can provide a new communication channel and control functions to people with restricted movements. Recent studies have indicated the effectiveness of brain–computer interface (BCI) applications. Various types of applications have been introduced so far in this field, but the number of those available to the public is still insufficient. Thus, there is a need to expand the usability and accessibility of BCI applications. In this study, we introduce a BCI application for users to experience a virtual world tour. This software was built on three open-source environments and is publicly available through the GitHub repository. For a usability test, 10 healthy subjects participated in an electroencephalography (EEG) experiment and evaluated the system through a questionnaire. As a result, all the participants successfully played the BCI application with 96.6% accuracy with 20 blinks from two sessions and gave opinions on its usability (e.g., controllability, completeness, comfort, and enjoyment) through the questionnaire. We believe that this open-source BCI world tour system can be used in both research and entertainment settings and hopefully contribute to open science in the BCI field.


2021 ◽  
Vol 5 (10) ◽  
pp. 64
Author(s):  
Miguel Angel Garcia-Ruiz ◽  
Bill Kapralos ◽  
Genaro Rebolledo-Mendez

This paper describes an overview of olfactory displays (human–computer interfaces that generate and diffuse an odor to a user to stimulate their sense of smell) that have been proposed and researched for supporting education and training. Past research has shown that olfaction (the sense of smell) can support memorization of information, stimulate information recall, and help immerse learners and trainees into educational virtual environments, as well as complement and/or supplement other human sensory channels for learning. This paper begins with an introduction to olfaction and olfactory displays, and a review of techniques for storing, generating and diffusing odors at the computer interface. The paper proceeds with a discussion on educational theories that support olfactory displays for education and training, and a literature review on olfactory displays that support learning and training. Finally, the paper summarizes the advantages and challenges regarding the development and application of olfactory displays for education and training.


2019 ◽  
Author(s):  
Jeffrey M. Weiss ◽  
Robert A. Gaunt ◽  
Robert Franklin ◽  
Michael Boninger ◽  
Jennifer L. Collinger

AbstractWhile recent advances in intracortical brain-computer interfaces (iBCI) have demonstrated the ability to restore motor and communication functions, such demonstrations have generally been confined to controlled experimental settings and have required bulky laboratory hardware. Here, we developed and evaluated a self-contained portable iBCI that enabled the user to interact with various computer programs. The iBCI, which weighs 1.5 kg, consists of digital headstages, a small signal processing hub, and a tablet PC. A human participant tested the portable iBCI in laboratory and home settings under an FDA Investigational Device Exemption (NCT01894802). The participant successfully completed 96% of trials in a 2D cursor center-out task with the portable iBCI, a rate indistinguishable from that achieved with the standard laboratory iBCI. The participant also completed a variety of free-form tasks, including drawing, gaming, and typing.


2020 ◽  
Author(s):  
Catherine Manning ◽  
Eric-Jan Wagenmakers ◽  
Anthony Norcia ◽  
Gaia Scerif ◽  
Udo Boehm

Children make faster and more accurate decisions about perceptual information as they get older, but it is unclear how different aspects of the decision-making process change with age. Here, we used hierarchical Bayesian diffusion models to decompose performance in a perceptual task into separate processing components, testing age-related differences in model parameters and links to neural data. We collected behavioural and EEG data from 96 six- to twelve-year-olds and 20 adults completing a motion discrimination task. We used a component decomposition technique to identify two response-locked EEG components with ramping activity preceding the response in children and adults: one with activity that was maximal over centro-parietal electrodes and one that was maximal over occipital electrodes. Younger children had lower drift rates (reduced sensitivity), wider boundary separation (increased response caution) and longer non-decision times than older children and adults. Yet model comparisons suggested that the best model of children’s data included age effects only on drift rate and boundary separation (not non-decision time). Next we extracted the slope of ramping activity in our EEG components and covaried these with drift rate. The slopes of both EEG components related positively to drift rate, but the best model with EEG covariates included only the centro-parietal component. By decomposing performance into distinct components and relating them to neural markers, diffusion models have the potential to identify the reasons why children with developmental conditions perform differently to typically developing children - and to uncover processing differences inapparent in the response time and accuracy data alone.


2013 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
Alessandro Luiz Stamatto Ferreira ◽  
Leonardo Cunha de Miranda ◽  
Erica Esteves Cunha de Miranda ◽  
Sarah Gomes Sakamoto

Brain-Computer Interface (BCI) enables users to interact with a computer only through their brain biological signals, without the need to use muscles. BCI is an emerging research area but it is still relatively immature. However, it is important to reflect on the different aspects of the Human-Computer Interaction (HCI) area related to BCIs, considering that BCIs will be part of interactive systems in the near future. BCIs most attend not only to handicapped users, but also healthy ones, improving interaction for end-users. Virtual Reality (VR) is also an important part of interactive systems, and combined with BCI could greatly enhance user interactions, improving the user experience by using brain signals as input with immersive environments as output. This paper addresses only noninvasive BCIs, since this kind of capture is the only one to not present risk to human health. As contributions of this work we highlight the survey of interactive systems based on BCIs focusing on HCI and VR applications, and a discussion on challenges and future of this subject matter.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Akram Jassim Jawad

Nowadays, smart home devices have started to take a part in everything in our life, which mainly have been developed to consist from brain computer interface (BCI). In recent months, Neuralink BCI (1024-Electode) has been approved to be used by Food and Drug Administration (FDA) in the USA. That makes the ethical related studies have more attention to apply these devices and technologies in our daily life with more security. In this work, the ethical challenges of smart home systems that use BCI for personal monitoring, such as Neuralink Interfaces, have been reviewed, analysed and discussed regarding the fundamental principles in ‘Statement of Ethical Principles for the Engineering Profession’ of the UK. Firstly, a brief introduction of Neuralink BCI technology and important applications in daily life were discussed with related ethics issues. Then, proposed solutions and recommendations for every situation have been introduced and discussed as well. The main proposed ways to address that are establishing and introducing the related laws and rules, technology development of security and safety, and educate for acceptance culture in the society.


Sign in / Sign up

Export Citation Format

Share Document