scholarly journals In Vitro Pro-Glycative Effects of Resveratrol and Caffeic Acid

2019 ◽  
Vol 66 (2) ◽  
pp. 11-17
Author(s):  
E. Kurin ◽  
P. Mučaji ◽  
M. Nagy

Abstract Resveratrol and caffeic acid belong to plant polyphenols and are known for their antioxidant effects. The aim of our research was to study their impact on Maillard reaction. This one occurs when the reducing saccharides react with amino groups of biomolecules including proteins, alter their protein conformation and transform to the variety of advanced glycation end products (AGEs). AGEs exhibit browning and generate fluorescence. There exist expectations that this oxidative protein glycosylation could be prevented by antioxidants. In this study, we incubated bovine serum albumin (BSA) with glucose for 7 days at 37°C and measured characteristic fluorescence and UV absorbance of the formed AGEs. Surprisingly, resveratrol and caffeic acid enhanced transformation of BSA to glycation products, which was confirmed either when cupric Cu(II) or ferric Fe(III) ions in nanomolar concentration were added to the system as pro-oxidant agent.

1987 ◽  
Vol 245 (1) ◽  
pp. 243-250 ◽  
Author(s):  
S P Wolff ◽  
R T Dean

Monosaccharide autoxidation (a transition metal-catalysed process that generates H2O2 and ketoaldehydes) appears to contribute to protein modification by glucose in vitro. The metal-chelating agent diethylenetriaminepenta-acetic acid (DETAPAC), which inhibits glucose autoxidation, also reduces the covalent attachment of glucose to bovine serum albumin. A maximal 45% inhibition of covalent attachment was observed, but this varied with glucose and DETAPAC concentrations in a complex fashion, suggesting at least two modes of attachment. The extent of inhibition of the metal-catalysed pathway correlated with the extent of inhibition of glycosylation-associated chromo- and fluorophore development. DETAPAC also inhibited tryptophan fluorescence quenching associated with glycosylation. Conversely, ketoaldehydes analogous to those produced by glucose autoxidation, but generated by 60Co irradiation, bound avidly to albumin and accelerated browning reactions. It is therefore suggested that a component of protein glycosylation is dependent upon glucose autoxidation and subsequent covalent attachment of ketoaldehydes. The process of glucose autoxidation, or ketoaldehydes derived therefrom, appear to be important in chromophoric and fluorophoric alterations. It is noted, consistent with these observations, that the chemical evidence for the currently accepted ‘Amadori’ product derived from the reaction of glucose with protein amino groups is consistent also with the structure expected for the attachment of a glucose-derived ketoaldehyde to protein. The concept of ‘autoxidative glycosylation’ is briefly discussed in relation to oxidative stress in diabetes mellitus.


1963 ◽  
Vol 42 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Arthur I. Cohen ◽  
Edward H. Frieden

ABSTRACT A number of corticotrophin analogues have been prepared, some of which potentiate the biological activity of the untreated hormone in vitro. The free amino groups of corticotrophin appear to be essential not only for hormonal activity, but also for the interaction of the analogues with the tissue corticotrophin inactivating system which is assumed to account for the potentiating effect.


2014 ◽  
Vol 1 (e1) ◽  
pp. 001-001 ◽  
Author(s):  
Kei Fukami ◽  
Takanori Matsui ◽  
Sho-ichi Yamagishi

2019 ◽  
Vol 25 (22) ◽  
pp. 2474-2479 ◽  
Author(s):  
Alisson Diego Machado ◽  
Gustavo Rosa Gentil Andrade ◽  
Jéssica Levy ◽  
Sara Silva Ferreira ◽  
Dirce Maria Marchioni

Background: Coronary Artery Calcification (CAC) is considered an important cardiovascular risk factor. There is evidence that CAC is associated with an increased risk of atherosclerosis, coronary events and cardiovascular mortality. Inflammation is one of the factors associated with CAC and despite the interest in antioxidant compounds that can prevent CAC, its association with antioxidants remains unclear. Objective: This study aimed to systematically review the association between vitamins and minerals with antioxidant effects and CAC in adults and older adults. Methods: We conducted a systematic review using PubMed for articles published until October 2018. We included studies conducted in subjects aged 18 years and older with no previous cardiovascular disease. Studies involving animal or in vitro experiments and the ones that did not use reference methods to assess the CAC, dietary intake or serum levels of vitamin or mineral were excluded. Results: The search yielded 390 articles. After removal of duplicates, articles not related to the review, review articles, editorials, hypothesis articles and application of the inclusion and exclusion criteria, 9 articles remained. The results of the studies included in this systematic review suggest that magnesium is inversely associated with CAC and results on the association between CAC and vitamin E have been conflicting. Conclusion: Additional prospective studies are needed to elucidate the role of these micronutrients on CAC.


2000 ◽  
Vol 15 (4) ◽  
pp. 297-308 ◽  
Author(s):  
NAOZUMI TERAMOTO ◽  
YUKIO IMANISHI ◽  
YOSHIHIRO ITO

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3005
Author(s):  
Kanchan Bhardwaj ◽  
Ana Sanches Silva ◽  
Maria Atanassova ◽  
Rohit Sharma ◽  
Eugenie Nepovimova ◽  
...  

Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers’ phytochemicals and illustrates their potential role as drugs.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 453
Author(s):  
Ana Filošević Vujnović ◽  
Katarina Jović ◽  
Emanuel Pištan ◽  
Rozi Andretić Waldowski

Non-enzymatic glycation and covalent modification of proteins leads to Advanced Glycation End products (AGEs). AGEs are biomarkers of aging and neurodegenerative disease, and can be induced by impaired neuronal signaling. The objective of this study was to investigate if manipulation of dopamine (DA) in vitro using the model protein, bovine serum albumin (BSA), and in vivo using the model organism Drosophila melanogaster, influences fluorescent AGEs (fAGEs) formation as an indicator of dopamine-induced oxidation events. DA inhibited fAGEs-BSA synthesis in vitro, suggesting an anti-oxidative effect, which was not observed when flies were fed DA. Feeding flies cocaine and methamphetamine led to increased fAGEs formation. Mutants lacking the dopaminergic transporter or the D1-type showed further elevation of fAGEs accumulation, indicating that the long-term perturbation in DA function leads to higher production of fAGEs. To confirm that DA has oxidative properties in vivo, we fed flies antioxidant quercetin (QUE) together with methamphetamine. QUE significantly decreased methamphetamine-induced fAGEs formation suggesting that the perturbation of DA function in vivo leads to increased oxidation. These findings present arguments for the use of fAGEs as a biomarker of DA-associated neurodegenerative changes and for assessment of antioxidant interventions such as QUE treatment.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 762
Author(s):  
Katerina Tzima ◽  
Nigel P. Brunton ◽  
Noel A. McCarthy ◽  
Kieran N. Kilcawley ◽  
David T. Mannion ◽  
...  

The in vitro antioxidant effects of the most potent antioxidants of rosemary, namely carnosol, carnosic acid and rosmarinic acid (c: ca: ra) were assessed in fat-filled milk powders (FFMPs) under accelerated conditions (40 °C and relative humidity (RH) 23%) over 90 days. Lipid oxidation was assessed in FFMPs by measuring peroxide values (PVs), thiobarbituric acid reactive substances (TBARS) and aroma volatiles using headspace (HS) solid-phase microextraction (SPME) coupled to gas-chromatography-mass spectrometry (GC-MS). The antioxidant potency of c: ca: ra exhibited a concentration-related effect (308 ppm > 200 ppm > 77 ppm), with the highest concentration being the most effective at controlling the formation of TBARS and PVs. At a concentration of 308 ppm c: ca: ra were particularly effective (p < 0.05) in inhibiting all the evaluated oxidation indices (primary and secondary) compared to the control samples, but in some cases less effectively (p < 0.05) than butylated hydroxyanisole: butylated hydroxytoluene (BHA: BHT) (200 ppm).


Sign in / Sign up

Export Citation Format

Share Document