scholarly journals Does Biochar Influence Soil CO2 Emission Four Years After Its Application to Soil?

2021 ◽  
Vol 24 (s1) ◽  
pp. 109-116
Author(s):  
Tatijana Kotuš ◽  
Ján Horák

Abstract Biochar application into soil has potential as a means for reducing soil greenhouse gas emissions and climate mitigation strategy. In this study, we evaluated the impact of two doses of biochar (10 and 20 t.ha−1) applied in 2014, combined with three fertilization levels (N0, N1, N2) on carbon dioxide (CO2) in field conditions during the growing season (April – October) in 2018. The field site is located in the Nitra region of Slovakia – Malanta. The soil in the field was classified as a silt loam Haplic Luvisol. There was not found any statistically significant (P <0.05) decreasing effect of biochar with or without N-fertilizer after four years of its application on average daily and cumulative CO2 emissions, while the CO2 emissions increased with additional N-fertilizer. Biochar decreased (insignificantly) the daily and cumulative CO2 emissions only in the treatments without N-fertilization and in the treatment fertilized with higher level of biochar application (20 t.ha−1) and N-fertilizer (80 kg.N.ha−1). According to these results it can be concluded that the biochar applied to soil is not able to reduce CO2 emissions after four years of its application when it is combined with usual agriculture practices which include N-fertilization.

2020 ◽  
Vol 12 (13) ◽  
pp. 5271
Author(s):  
Dejie Kong ◽  
Nana Liu ◽  
Chengjie Ren ◽  
Huiying Li ◽  
Weiyu Wang ◽  
...  

Developing environmentally friendly and sustainable nitrogen (N) fertilizer management strategies is crucial in mitigating carbon dioxide (CO2) emission from soil. How N fertilizer management practices influence soil CO2 emission rates under different crop rotations remains unclear. The aim of this study was to assess the impact on soil CO2 emission and soil physicochemical properties of three N fertilizer treatments including traditional rate (TF), optimized rate (0.8TF), and no fertilizer (NF) under three different crop rotation treatments: wheat-fallow (WF), wheat-soybean (WS), and wheat-maize (WM) over two years in a field experiment in northwest China. The rates were 5.51, 5.60, and 5.97 μmol·m−2·s−1 of mean soil CO2 emission under the TF, 0.8TF, and NF treatments, respectively. Mean soil CO2 emission rates were 21.33 and 26.99% higher under the WM rotation compared with the WF and WS rotations, respectively. The WS rotation showed higher soil nutrient content and lower soil CO2 emissions, and reduced fertilizer application. Importantly, soil organic carbon (SOC) concentration in the topsoil can be maximized by including either a summer legume or a summer maize crop in winter wheat rotations, and by applying N fertilizer at the optimal rate. This may be particularly beneficial in the dryland cropping systems of northern China.


2010 ◽  
Vol 30 (2) ◽  
pp. 224-231 ◽  
Author(s):  
Luis G Teixeira ◽  
Afonso Lopes ◽  
Newton La Scala Jr

To study Assessing the impact of tillage practices on soil carbon losses dependents it is necessary to describe the temporal variability of soil CO2 emission after tillage. It has been argued that large amounts of CO2 emitted after tillage may serve as an indicator for longer-term changes in soil carbon stocks. Here we present a two-step function model based on soil temperature and soil moisture including an exponential decay in time component that is efficient in fitting intermediate-term emission after disk plow followed by a leveling harrow (conventional), and chisel plow coupled with a roller for clod breaking (reduced) tillage. Emission after reduced tillage was described using a non-linear estimator with determination coefficient (R²) as high as 0.98. Results indicate that when emission after tillage is addressed it is important to consider an exponential decay in time in order to predict the impact of tillage in short-term emissions.


Agriculture ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 143 ◽  
Author(s):  
Dafeng Hui ◽  
Chih-Li Yu ◽  
Qi Deng ◽  
Priya Saini ◽  
Kenya Collins ◽  
...  

Application of nitrogen (N) fertilizer plus biochar may increase crop yield, but how biochar will interact with N fertilization to affect bioenergy crop switchgrass physiology, biomass, and soil CO2 emission (i.e., soil respiration) from switchgrass fields remains unclear. Here, we assessed this issue by conducting a field experiment near Nashville TN with two levels of biochar treatment (a control without biochar addition and biochar addition of 9 Mg ha−1), and four N fertilization levels (0 kg N ha−1, 17 kg N ha−1, 34 kg N ha−1, and 67 kg N ha−1, labeled as ON, LN, MN, and HN, respectively). Results showed that both biochar addition and N fertilization did not influence switchgrass leaf photosynthesis and biomass, but biochar addition enhanced leaf transpiration, and reduced water use efficiency. Soil respiration was reduced by biochar addition, but significantly enhanced by N fertilization. Biochar and N fertilization interactively influenced soil respiration and seasonal variation of soil respiration was mostly controlled by soil temperature. Our results indicated that switchgrass can maintain high productivity without much N input, at least for several years. The findings from this study are useful to optimize N fertilization and biochar addition in the switchgrass fields for maintaining relatively high productive switchgrass biomass while reducing soil CO2 emission.


2006 ◽  
Vol 86 (3) ◽  
pp. 685-692 ◽  
Author(s):  
R. H. McKenzie ◽  
A. B. Middleton ◽  
E. Bremer

Agronomic practices for chickpea (Cicer arietinum L.) production on the Canadian prairies are not well established. The objective of this study was to evaluate the impact of fallow on chickpea yield and response to rhizobia inoculation and fertilization. Field trials were conducted at nine fallow sites and nine stubble sites in southern Alberta over a 4-yr period (2000–2003). In the N experiment, N fertilizer was applied to rhizobia-inoculated and uninoculated desi (cv. Myles) and kabuli (cv. Sanford) chickpea at five N rates (0, 20, 40, 60 and 80 kg N ha-1). In the P experiment, P fertilizer was applied to desi chickpea at 0, 6.5 and 13 kg P ha-1. Growing season precipitation was well below normal during 3 of the 4 yr of this study, and fallow yields were more than double stubble yields. Desi seed yield increased 15.8 kg ha-1 for each millimetre increase in water use above a minimum requirement of 84 mm. Although nodulation of uninoculated chickpea was absent or very low at all sites, the benefits of inoculation were modest. On average, inoculation increased seed yield by 12%, seed protein concentration by 11%, and seed N yield by 24%. Inoculation responses were similar for fallow and stubble sites. Yield gains due to application of N fertilizer were also small at most sites, with no difference in yield gain between fallow and stubble sites. Yield benefits due to inoculation and N fertilization were often small because either moisture availability was low or soil N availability was high. Desi was more responsive to N fertilization than kabuli. Phosphorus fertilizer had a minimal impact on desi chickpea yield. Fallow had a large impact on chickpea yields, but did not affect rhizobia or fertilizer response. Key words: Cicer arietinum, yield, nitrogen, phosphorus, water use efficiency


1992 ◽  
Vol 2 (3) ◽  
pp. 382-387 ◽  
Author(s):  
David Sugar ◽  
Timothy L. Righetti ◽  
Enrique E. Sanchez ◽  
Habib Khemira

Management of pear (Pyrus communis L.) trees for low N and high Ca content in the fruit reduced the severity of postharvest fungal decay. Application of N fertilizer 3 weeks before harvest supplied N for tree reserves and for flowers the following spring without increasing fruit N. Calcium chloride sprays during the growing season increased fruit Ca content. Nitrogen and Ca management appear to be additive factors in decay reduction. Fruit density and position in the tree canopy influenced their response to N fertilization. Nitrogen: Ca ratios were lower in fruit from the east quadrant and bottom third of trees and from the distal portion of branches. High fruit density was associated with low N: Ca ratios. Nutritional manipulations appear to be compatible with other methods of postharvest decay control.


2018 ◽  
Vol 174 ◽  
pp. 92-98 ◽  
Author(s):  
Na Guo ◽  
Aidong Wang ◽  
A. Allan Degen ◽  
Bin Deng ◽  
Zhanhuan Shang ◽  
...  

Author(s):  
Adilson Amorim Brandão ◽  
Eduardo Guimarães Couto ◽  
Renato de Aragão Ribeiro Rodrigues ◽  
Oscarlina Lúcia dos Santos Weber ◽  
Osvaldo Borges Pinto Júnior

The application of liquid pig slurry (LPS) to pastures offers potential as a fertilizer but could have a direct influence on soil CO2 emissions. This study evaluated soil carbon dioxide emissions after successive LPS applications to soils under pasture cultivation. The experiment was carried out on ‘Tifton-85’ bermudagrass pasture cultivated in a red-yellow oxisol soil in the municipality of Lucas do Rio Verde-MT, Brazil. Two treatments were evaluated: the control and an application of 20 m3 ha-1 of LPS after each cut of the pasture. The CO2 emissions from the soil were determined using a high-precision infrared gas analyzer. Soil temperature and soil moisture were determined as were micrometeorological variables. The application of LPS had a significant effect on soil C-CO2 flow. The average flow of C-CO2 from the soil for the control treatment and with the application of LPS was 0.236 g C-CO2 m-2 h-1 and 0.291 g C-CO2 m-2 h-1, respectively. The application of LPS increased the accumulated CO2 emissions from the soil by 23.2%. Soil temperature and moisture are the main factors regulating the process of soil CO2 emission. These factors therefore need to be considered when evaluating the impact of LPS application on greenhouse gas emissions


2019 ◽  
Author(s):  
Yongwon Kim ◽  
Sang-Jong Park ◽  
Bang-Yong Lee

Abstract. Soil CO2 efflux-measurements represent an important component for estimating an annual carbon budget in response to changes in increasing air temperature, degradation of permafrost, and snow-covered extents in the Subarctic and Arctic. However, it is not widely known what is the effect of curstose lichen (Ochrolecia frigida) infected sphagnum moss on soil CO2 emission, despite the significant ecological function of sphagnum, and how lichen gradually causes the withering to death of intact sphagnum moss. Here, continuous soil CO2 efflux measurements by a forced diffusion (FD) chamber were investigated for intact and crustose lichen sphagnum moss covering over a tundra ecosystem of western Alaska during the growing seasons of 2015 and 2016. We found that CO2 efflux in crustose lichen during the growing season of 2016 was 14 % higher than in healthy sphagnum moss community, suggesting that temperature and soil moisture are invaluable drivers for stimulating soil CO2 efflux, regardless of the restraining functions of soil moisture over emitting soil carbon. Soil moisture does not influence soil CO2 emission in crustose lichen, reflecting a limit of ecological and thermal functions relative to intact sphagnum moss. During the growing season of 2015, there is no significant difference between soil CO2 effluxes in intact and crustose lichen sphagnum moss patches, based on a one-way ANOVA at the 95 % confidence level (p 


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Tashina Petersson ◽  
Luca Secondi ◽  
Andrea Magnani ◽  
Marta Antonelli ◽  
Katarzyna Dembska ◽  
...  

AbstractInforming and engaging citizens to adopt sustainable diets is a key strategy for reducing global environmental impacts of the agricultural and food sectors. In this respect, the first requisite to support citizens and actors of the food sector is to provide them a publicly available, reliable and ready to use synthesis of environmental pressures associated to food commodities. Here we introduce the SU-EATABLE LIFE database, a multilevel database of carbon (CF) and water (WF) footprint values of food commodities, based on a standardized methodology to extract information and assign optimal footprint values and uncertainties to food items, starting from peer-reviewed articles and grey literature. The database and its innovative methodological framework for uncertainty treatment and data quality assurance provides a solid basis for evaluating the impact of dietary shifts on global environmental policies, including climate mitigation through greenhouse gas emission reductions. The database ensures repeatability and further expansion, providing a reliable science-based tool for managers and researcher in the food sector.


2020 ◽  
Vol 13 (1) ◽  
pp. 222
Author(s):  
Miroslava Navrátilová ◽  
Markéta Beranová ◽  
Lucie Severová ◽  
Karel Šrédl ◽  
Roman Svoboda ◽  
...  

The aim of the presented article is to evaluate the impact of climate change on the sugar content of grapes in the Czech Republic during the period 2000–2019 through selected indicators on the basis of available secondary sources. Attention is focused on the developments in both the main wine-growing regions of Moravia and Bohemia. In the field of viticulture and wine-growing, the sugar content of grapes, as a basic parameter for the classification of wines, plays an important role. In the Czech Republic, the average sugar content of grapes has had a constantly growing trend. This trend is evident both in the wine-growing region of Bohemia and in the wine-growing region of Moravia. The impact of climate change, especially the gradual increase of average temperatures in the growing season, cannot be overlooked. It greatly affects, among other things, the sugar content of grapes. Calculations according to the Huglin Index and the Winkler Index were used to determine the relationship between climate and sugar content. These indexes summarize the course of temperatures during the entire vegetation period into a single numerical value. The results show that both indexes describe the effect of air temperature on sugar content in both wine regions of the Czech Republic in a statistically significant way. The Huglin Index shows a higher correlation rate. The Winkler Index proved to be less suitable for both areas. Alternatively, the Winkler Index calculated for a shorter growing season was tested, which showed a higher degree of correlation with sugar content, approaching the significance of the Huglin Index.


Sign in / Sign up

Export Citation Format

Share Document