scholarly journals Mathematical Modelling of Water-Based Fe3O4 Nanofluid Due to Rotating Disc and Comparison with Similarity Solution

2021 ◽  
Vol 15 (3) ◽  
pp. 113-121
Author(s):  
Anupam Bhandari

Abstract The current research demonstrates the revolving flow of water-based Fe3O4 nanofluid due to the uniform rotation of the disc. This flow of nanofluid is investigated using CFD Module in COMSOL Multiphysics. However, the similarity solution for this flow is also obtained after transforming the given equation into a non-dimensional form. In the CFD Module, streamlines and surface plots are compared with the similarity solution for the magnitude of the velocity, radial velocity, tangential velocity, and axial velocity. The results from the direct simulation in the CFD Module and the solution of dimensionless equations represent a similar solution of velocity distribution. The derived results show that increasing the volume concentration of nanoparticles and effective magnetic parameters decrease the velocity distribution in the flow. Results in the CFD Module are important for monitoring the real-time particle tracing in the flow and, on the other hand, the dimensionless solution is also significant for the physical interpretation of the problem. Both methods of solution empower each other and present the physical model without sacrificing the relevant physical phenomena.

1969 ◽  
Vol 11 (5) ◽  
pp. 454-467 ◽  
Author(s):  
K. Murugesan ◽  
J. W. Railly

An extension of Martensen's method is described which permits an exact solution of the inverse or blade design problem. An equation is derived for the normal velocity distributed about a given contour when a given tangential velocity is imposed about the contour and from this normal velocity an initial arbitrarily chosen blade shape may be successively modified until a blade is found having a desired surface velocity distribution. Five examples of the method are given.


2018 ◽  
Vol 2 (3) ◽  
pp. 32 ◽  
Author(s):  
Benjamin Oyegbile ◽  
Guven Akdogan ◽  
Mohsen Karimi

In this study, an experimentally validated computational model was developed to investigate the hydrodynamics in a rotor-stator vortex agglomeration reactor RVR having a rotating disc at the centre with two shrouded outer plates. A numerical simulation was performed using a simplified form of the reactor geometry to compute the 3-D flow field in batch mode operations. Thereafter, the model was validated using data from a 2-D Particle Image Velocimetry (PIV) flow analysis performed during the design of the reactor. Using different operating speeds, namely 70, 90, 110, and 130 rpm, the flow fields were computed numerically, followed by a comprehensive data analysis. The simulation results showed separated boundary layers on the rotating disc and the stator. The flow field within the reactor was characterized by a rotational plane circular forced vortex flow, in which the streamlines are concentric circles with a rotational vortex. Overall, the results of the numerical simulation demonstrated a fairly good agreement between the Computational Fluid Dynamics (CFD) model and the experimental data, as well as the available theoretical predictions. The swirl ratio β was found to be approximately 0.4044, 0.4038, 0.4044, and 0.4043 for the operating speeds of N = 70, 90, 110, and 130 rpm, respectively. In terms of the spatial distribution, the turbulence intensity and kinetic energy were concentrated on the outer region of the reactor, while the circumferential velocity showed a decreasing intensity towards the shroud. However, a comparison of the CFD and experimental predictions of the tangential velocity and the vorticity amplitude profiles showed that these parameters were under-predicted by the experimental analysis, which could be attributed to some of the experimental limitations rather than the robustness of the CFD model or numerical code.


1967 ◽  
Vol 71 (680) ◽  
pp. 587-587
Author(s):  
T. S. Cham ◽  
M. R. Head

In an earlier note Case reported direct measurements of entrainment on a rotating disc. More comprehensive measurements, made subsequently to those of Case and using essentially the same technique, are reported here. Two different sizes of drum were used in the present investigation, the flow within the drum in each case being smoothed by the use of a honeycomb and screens as well as a baffle at entry (see Fig. 1).The entrainment was also deduced from yawmeter and total pressure traverses through the boundary layer on the disc in free air, the integrated crossflow component of the velocity distribution through the layer evidently representing the entrainment up to the radius at which the traverses were performed. A typical measured crossflow profile is shown in Fig. 2.


2020 ◽  
Vol 9 (1) ◽  
pp. 13-23
Author(s):  
Samir M. Elshamy ◽  
Mohamed T. Abdelghany ◽  
M. R. Salem ◽  
O. E. Abdellatif

The aim of this research is to investigate experimentally the characteristics of the convective heat transfer and exergy analysis of pure water and water based Al2O3 nanofluid through helical coiled tubes (HCTs) and conical coiled tubes (CCTs) inside shell and coil heat exchangers. HCT and CCT fabricated with different coil torsions (λ) ranges from 0.0202 to 0.052 with different two angles (0° and 45°) while have the same curvature ratio (δ = 0.0564). The effects of mean coil torsion, the cone angle and nanoparticles volume concentration on the thermal performance were investigated. Results indicated that the overall heat transfer coefficient (Uov), convection heat transfer coefficient (ht), the tube side Nusselt number (Nut), effectiveness (ɛ) and exergy efficiency (ηex) of nanofluids are higher than those of the pure water at same flow condition, and this increase goes up with the increase in particle volume concentration (ϕ). The results also showed that Uov, ht, Nut, ɛ and ηex increases by decreasing the coil torsion from 0.052 to 0.0202. Correlations for Nut as a function of the investigated parameters are obtained.


Author(s):  
Zixiang Sun ◽  
Klas Lindblad ◽  
John W. Chew ◽  
Colin Young

The buoyancy-affected flow in rotating disc cavities, such as occurs in compressor disc stacks, is known to be complex and difficult to predict. In the present work large eddy simulation (LES) and unsteady Reynolds-averaged Navier-Stokes (RANS) solutions are compared with other workers’ measurements from an engine representative test rig. The Smagorinsky-Lilly model was employed in the LES simulations, and the RNG k-ε turbulence model was used in the RANS modelling. Three test cases were investigated in a range of Grashof number Gr = 1.87 to 7.41×108 and buoyancy number Bo = 1.65 to 11.5. Consistent with experimental observation, strong unsteadiness was clearly observed in the results of both models, however the LES results exhibited a finer flow structure than the RANS solution. The LES model also achieved significantly better agreement with velocity and heat transfer measurements than the RANS model. Also, temperature contours obtained from the LES results have a finer structure than the tangential velocity contours. Based on the results obtained in this work, further application of LES to flows of industrial complexity is recommended.


Author(s):  
Hasan Karabay ◽  
Robert Pilbrow ◽  
Michael Wilson ◽  
J. Michael Owen

This paper summarises and extends recent theoretical, computational and experimental research into the fluid mechanics, thermodynamics and heat transfer characteristics of the so-called cover-plate pre-swirl system. Experiments were carried out in a purpose-built rotating-disc rig, and the Reynolds-averaged Navier-Stokes equations were solved using 2D (axisymmetric) and 3D computational codes, both of which incorporated low-Reynolds-number k-ε turbulence models. The free-vortex flow, which occurs inside the rotating cavity between the disc and cover-plate, is controlled principally by the pre-swirl ratio, βp: this is the ratio of the tangential velocity of the air leaving the nozzles to that of the rotating disc. Computed values of the tangential velocity are in good agreement with measurements, and computed distributions of pressure are in close agreement with those predicted by a one-dimensional theoretical model. It is shown theoretically and computationally that there is a critical pre-swirl ratio, βp,crit, for which the frictional moment on the rotating discs is zero, and there is an optimal pre-swirl ratio, βp,opt, where the average Nusselt number is a minimum. Computations show that, for βp < βp,opt, the temperature of the blade-cooling air decreases as βp increases; for βp > βp,opt, whether the temperature of the cooling air increases or decreases as βp increases depends on the flow conditions and on the temperature difference between the disc and the air. Owing to the three-dimensional flow and heat transfer near the blade-cooling holes, and to unquantifiable uncertainties in the experimental measurements, there were significant differences between the computed and measured temperatures of the blade-cooling air. In the main, the 3D computations produced smaller differences than the 2D computations.


Predictions by two methods are presented of the onset of instability in developed tangential flow in a concentric annulus due to inner cylinder rotation. The first formulation is as an initial-value problem in which the time evolution of initially-distributed small random vorticity perturbations of given axial wavelength is monitored by numerically integrating the unsteady perturbation equations by explicit finite-difference procedure. The second method is the Galerkin approach where an eigenvalue problem is formulated in which the linearized disturbance equations are solved to predict the neutral stability condition. Comparisons for a radius ratio N of 0.9 and Re up to 350 show that an averaged axial velocity distribution and the exact axial distribution yield similar predictions of Ta c and the corresponding critical wavelength; these however, differ markedly from previous narrow-gap predictions based on a parabolic approximation to the axial distribution. The current use of the exact developed tangential velocity distribution permits investigation by the Galerkin method for 0.9≽ N ≽ 0.1 and Re up to 2000. Computations of Ta c are in satisfactory agreement with earlier measurements for N of 0.95, 0.82 and 0.81 and accord well with current measurements over the range 50 ≼ Re ≼ 400 in an annulus of radius ratio 0.9.


Sign in / Sign up

Export Citation Format

Share Document