scholarly journals The Study of Movement of the Wide Span Tractor-Based Field Machine Unit with Power Method of its Control

2018 ◽  
Vol 21 (4) ◽  
pp. 160-165
Author(s):  
Volodymyr Bulgakov ◽  
Volodymyr Kuvachov ◽  
Ladislav Nozdrovický ◽  
Pavol Findura ◽  
Stanislav Smolinskyi ◽  
...  

Abstract Recently, rapid development of controlled traffic farming convincingly demonstrates the broad prospects of using the wide span tractor-based field machines throughout the world. The issue at hand lies in the fact that having a wide span tractor-based machine with steering-wheel system moving along the tracks of a constant technological track is not a rational option. According to the concept of bridge and rutting agriculture, it is advisable to subordinate the automated means of mechanization to the principles of the functioning of the coordinate transport system in which machines can move only in two mutually perpendicular directions and for implementation of which the field must have strictly defined dimensions. Therefore, a method of power steering similar to a crawler tractor (track-type tractor) can be more efficient in the automatic driving of bridge means of mechanization within the coordinate-transport system than a kinematic control. Furthermore, methodology utilized for selection of design schemes, parameters and operating modes of machine-tractor aggregates can not be used for study of dynamics of the wide span tractor-based field machine. Theoretical study is based on theoretical mechanics, theory of mobile energy facilities, statistical dynamics and theory of automatic control of linear dynamical systems with reproduction of statistically random control and disturbing input effects. Purpose of the research lies in development of a dynamic model of plane parallel motion in the horizontal plane of a wide span tractor-based field machine unit using a power (onboard) method of control, which would allow investigation of impacts of the control parameters and disturbing influences on the controllability and stability of its motion. Mathematical models have been developed and new regularities of the straightforward parallel movement of the wide span tractor-based field machine unit for controlled traffic farming have been obtained. The results obtained allow the validation of new schemes, design parameters and modes of operation with acceptable controllability and stability of movement in the horizontal plane with a power control method of the chassis.

2017 ◽  
Vol 20 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Volodymyr Bulgakov ◽  
Valerii Adamchuk ◽  
Volodymyr Nadykto ◽  
Volodymyr Kyurchev ◽  
Ladislav Nozdrovický

Abstract The paper is focused on the issues of controllability of machine-tractor units based on wheel-type tractors during their non-straight driving on the soil surface, which is positioned at an angle to the horizon. There were obtained analytical expressions for the determination of the actual indicator of control λd, including both the power and the design parameters of the machine-tractor unit, which affect the abovementioned indicator in the longitudinal vertical plane. These expressions are obtained for the tractor driving on both road and also driving during field operation. In addition, the paper discusses the conditions under which there may occur the cross-slip of the tractor steering wheels in the transversal horizontal plane. As a result of this review, there were obtained the analytical expressions for determining the required indicator of the controllability λd of machine-tractor unit in the horizontal plane, excluding the possibility of lateral sliding of the unit by turning its steering wheels at a certain angle. These expressions are obtained for the two modes of the machine-tractor unit: for driving during transport on the road and during the operation in the field. The machine-tractor unit based on the wheel-type tractor with rear mounted 3-mouldboard plough was analytically investigated. By means of computer calculations, there was observed the fact that when moving in non-straight direction on the soil surface, inclined to the horizon at an angle of 12°, the machine-tractor unit is controllable only when the angles of the steering wheel of the given tractor do not exceed 9°. During the working movement (ploughing) of the given machine-tractor unit on an inclined field surface, its controllability will be preserved on condition that the angle of the tractor steering wheels does not exceed 11°. According to obtained results, it can be stated that the controllability of the machine-tractor unit is determined by the indicator of controllability, taking into account the value of the vertical load acting on the tractor steering wheels, the possibility of their turning in the horizontal plane, as well as the withdrawal of the machine-tractor unit from rectilinear motion and its movement on the field surface, inclined at an angle to the horizon.


2021 ◽  
Vol 13 (6) ◽  
pp. 168781402110284
Author(s):  
Weikang Kong ◽  
Jixin Wang ◽  
Dewen Kong ◽  
Yuanying Cong ◽  
Shuangshi Feng

With the rapid development of the world economic construction and the shortage of energy, it has become a hot research issue to realize the electrification of the vehicle driving system and improve energy efficiency. Most of the electric construction machinery power systems are characterized by low speed and high load. The coordinated driving of multiple motors can increase the output torque and improve the transmission efficiency of the machine on the basis of a compact layout. A novel configuration of electric construction vehicles based on multi-motor and single-speed and its driving torque distribution control method is presented in this paper. The detailed mathematical model is established and the simulation analysis is carried out based on it. The results show that the proposed multi-motor driving system with the control strategy can improve the overall efficiency in the condition of ensuring the driving force when the parameter matching and motors choosing reasonably.


Author(s):  
R S Sharp

The article is about steering control of cars by drivers, concentrating on following the lateral profile of the roadway, which is presumed visible ahead of the car. It builds on previously published work, in which it was shown how the driver's preview of the roadway can be combined with the linear dynamics of a simple car to yield a problem of discrete-time optimal-linear-control-theory form. In that work, it was shown how an optimal ‘driver’ of a linear car can convert the path preview sample values, modelled as deriving from a Gaussian white-noise process, into steering wheel displacement commands to cause the car to follow the previewed path with an attractive compromise between precision and ease. Recognizing that real roadway excitation is not so rich in high frequencies as white-noise, a low-pass filter is added to the system. The white-noise sample values are filtered before being seen by the driver. Numerical results are used to show that the optimal preview control is unaltered by the inclusion of the low-pass filter, whereas the feedback control is affected diminishingly as the preview increases. Then, using the established theoretical basis, new results are generated to show time-invariant optimal preview controls for cars and drivers with different layouts and priorities. Tight and loose controls, representing different balances between tracking accuracy and control effort, are calculated and illustrated through simulation. A new performance criterion with handling qualities implications is set up, involving the minimization of the preview distance required. The sensitivities of this distance to variations in the car design parameters are calculated. The influence of additional rear wheel steering is studied from the viewpoint of the preview distance required and the form of the optimal preview gain sequence. Path-following simulations are used to illustrate relatively high-authority and relatively low-authority control strategies, showing manoeuvring well in advance of a turn under appropriate circumstances. The results yield new insights into driver steering control behaviour and vehicle design optimization. The article concludes with a discussion of research in progress aimed at a further improved understanding of how drivers control their vehicles.


1999 ◽  
Author(s):  
William G. Broadhead ◽  
D. Theodore Zinke

Abstract The design of an airbag restraint system presents a classic engineering challenge. There are numerous design parameters that need to be optimized to cover the wide range of occupant sizes, occupant positions and vehicle collision modes. Some of the major parameters that affect airbag performance include, the airbag inflator characteristics, airbag size and shape, airbag vent size, steering column collapse characteristics, airbag cover characteristics, airbag fold pattern, knee bolsters, seat, seat belt characteristics, and vehicle crush characteristics. Optimization of these parameters can involve extremely costly programs of sled tests and full scale vehicle crash tests. Federal Motor Vehicle Safety Standards (FMVSS) with regard to airbag design are not specific and allow flexibility in component characteristics. One design strategy, which is simplistic and inexpensive, is to utilize a very fast, high output gas generator (inflator). This ensures that the bag will begin restraining the occupant soon after deployment and can make up for deficiencies in other components such as inadequate steering column collapse or an unusually stiff vehicle crush characteristic. The use of such inflators generally works well for properly positioned occupants in moderate to high-speed frontal collisions by taking advantage of the principle of ridedown. When an airbag quickly fills the gap between the occupant and the instrument panel or steering wheel it links him to the vehicle such that he utilizes the vehicle’s front-end crush to help dissipate his energy, thus reducing the restraint forces. Unfortunately, powerful airbag systems can be injurious to anyone in the path of the deploying airbag. This hazard is present for short statured individuals, out of position children or any occupant in a collision that results in extra ordinary crash sensing time. Currently, the National Highway Traffic Safety Administration (NHTSA) is proposing to rewrite FMVSS 208 to help reduce such hazards.


2019 ◽  
Vol 14 (10) ◽  
pp. 87 ◽  
Author(s):  
Arshia Taimouri ◽  
Korosh Emamisaleh ◽  
Davoud Mohammadi

Following the rapid development of the Internet, e-commerce websites are widely used today for various goals. An essential point in the prosperity of these websites is their level of usability. Accordingly, measuring this usability is indispensable for these websites to check whether they are moving in the right path. Thus, in this article, the usability scores of five well-known online food-ordering websites in Iran have been evaluated using a novel fuzzy Kano method with respect to design parameters. In addition to assessing usability scores, the design parameters of these websites have been classified and reviewed in a detailed manner in order to determine the design priorities of these websites as one of the main results of this study. Data were gathered using a questionnaire with 190 respondents. Results demonstrated that Snappfood is the best online food-ordering website in Iran. In addition, sorting restaurants based on customer satisfaction score, using high-quality images of foods along with the image zooming feature, and the existence of complete information about foods and restaurants are the most effective and important design parameters of these types of websites according to the findings of this study.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012015
Author(s):  
Yilun Tan ◽  
Yucheng Wang

Abstract With the rapid development of new energy generation, the intermittence and randomicity of its power output will have a significant impact on the transmission capacity of DC motor. Therefore, a virtual DC motor stability control method considering the fluctuation of new energy generation is proposed. The natural frequencies and modes of the virtual DC motor shafting rotor are analyzed by means of a steady sinusoidal excitation at zero speed. Considering the transient dynamic response of the shafting rotor of virtual DC motor under the fluctuation of new energy generation, Taylor series and transfer acceleration matrix method are used to calculate the transient dynamic response of shafting rotor under the fluctuation of new energy generation, and the parameters of virtual DC motor are identified and estimated. Based on this, a proportional resonance controller is designed to realize the stability control of virtual DC motor. Experimental results show that the interactive power curve between virtual DC motor and regional distribution network is smoother after optimal control, and this method can effectively improve the power balance ability of virtual DC motor.


2021 ◽  
Author(s):  
Bingxin Chen ◽  
Lifei Kuang ◽  
Wei He

Abstract Today, with the rapid development of information age, the communication of science and technology is getting closer to each other, and our country has begun to conduct in-depth research on WSN. This study mainly discusses the computer simulation algorithm of gymnastics formation transformation path based on wireless sensor. In this study, an improved leader follower method is designed. In the research of gymnastics formation transformation of mobile nodes in wireless sensor network environment, the traditional three types of nodes are divided into four categories according to different formation responsibilities, namely coordinator, beacon node, leader and follower. When it makes accurate positioning with the help of beacon node information, it will send the information in the form of broadcast, and then the coordinator will send the information to the host computer through the serial port for tracking display. In order to make the mobile nodes in the network keep the current gymnastics formation moving towards the target point after completing the gymnastics formation transformation, this paper uses the L - φ closed-loop control method to modify the gymnastics formation in real time. The method based on the received signal strength is used to locate the mobile node. Combined with the positioning engine in the core processor CC2431 of the mobile node, the efficient and low-energy wireless positioning can be realized. Multiple mobile nodes coordinate and control each other, and each node communicates with each other through wireless mode, and senses its own heading angle information through geomagnetic sensor, so as to judge and adjust the maintenance and transformation of the current gymnastics formation. In the process of formation transformation, the analysis shows that the maximum offset of follower2 relative to the ideal path is + 0.28M in the process of marching to the desired position in the triangle queue. This research effectively realizes the computer simulation of autonomous formation.


2019 ◽  
Vol 35 (2) ◽  
pp. 249-258
Author(s):  
Tao Ding ◽  
Lumeng Fang ◽  
Ji-Qin Ni ◽  
Zhengxiang Shi ◽  
Baoming Li ◽  
...  

Abstract.With the rapid development of modern agriculture facilities, agricultural fans have been widely used due to their low pressure and large airflow characteristics. However, existing agricultural fans have large flow losses and low energy efficiencies. To increase the airflow and energy efficiency of these fans, optimization designs based on skewed and swept blades were carried out. First, a “DDZ” agricultural fan (a leaf model agricultural fan commonly used in China) was chosen as the archetype fan. Its performance curves and flow field distribution were obtained by performance testing and numerical simulation. Second, the stack lines of the skewed blade and swept blade were designed based on the original blade, 3 skewed blade parameters (skewed angle a, x direction control parameter kx, and y direction control parameter ky), and 3 swept blade design parameters (swept angle ß, z direction control parameter kz, and r direction control parameter kr). Finally, the optimal skewed blade design parameters (a = 16.8°, kx = 1.65, and ky = 0.5) and optimal swept blade design parameters (ß = 10.6°, kz = -0.33, and kr =0.6) were obtained using numerical simulations and orthogonal testing, which is a response surface method. The numerical simulation results showed that the airflow and energy efficiency ratios of the optimal skewed blade fan were increased by 4.3% and 20.5%, and those of the optimal swept blade fan were increased by 4.5% and 15.4%, respectively, in comparison with those of the original fan. The flow fields showed that the optimal skewed blade mainly reduced the radial flow at the blade root and the leakage flow. The optimal swept blade mainly reduced the leakage flow by changing the distribution of the static pressure on the blade surfaces. Keywords: Agricultural fan, Skewed-Swept blade, Numerical simulation, Optimization.


Sign in / Sign up

Export Citation Format

Share Document