scholarly journals Analysis of Mechanical Behavior of Different Needle Tip Shapes During Puncture of Carbon Fiber Fabric

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jingzhao Yang ◽  
Jiuzhi Dong ◽  
Yunjun Chen ◽  
Xiuming Jiang

Abstract In the present study, the fiber-bending around the needle during the piercing process of the carbon fabric is investigated. In this regard, a mathematical model is established to investigate the bending elongation of the carbon fiber around the needle and the interaction between the carbon fiber and the needle tip. Then the mechanical behavior of the carbon fabric when moving down the tip of the steel needle is analyzed. Based on the performed analysis, a shape curve equation that satisfies the puncture needle tip is established. Furthermore, the influence of different needle tip shapes on the mechanical behavior of the carbon fiber is analyzed. The performance of the needle tip is subjected to different loads, including the puncture template, horizontal tension of the fiber to the needle tip, frictional resistance between the fiber and the needle tip, sliding force, and the bending moment. The performed analysis shows that when the shape of the needle tip assumes the form of curve 10, the downward force, horizontal tension, friction resistance, sliding force, and bending moment are minimized. Accordingly, curve 10 is proposed as the optimal shape for the needle tip. The present study is expected to provide theoretical guidance for selecting overall puncture process parameters.

2017 ◽  
Vol 13 ◽  
pp. 66 ◽  
Author(s):  
Pavel Klapálek ◽  
Zdeněk Prošek ◽  
Aleš Jíra ◽  
Lenka Melzerová

This paper is focused mainly on nanoindentation of carbon fibers. Fibers are in form of carbon fiber fabric that is used in larger research that is focused on reinforcing beams made of glued laminated timber. Knowledge of this material on macro and micro level will help to understand its behavior in this specific type of use. Nanoindentation is method used in this paper to obtain material characteristics on micro level such as hardness and modulus of elasticity. Samples of the carbon fiber fabric had to be prepared for this specific testing method by polishing samples of carbon fabric attached in epoxy resin. In particular, it was found that the indentation hardness of the fibers ranges around 3.65 GPa and modulus of elasticity ranges around 26 GPa.


2016 ◽  
Vol 72 (12) ◽  
pp. 244-250 ◽  
Author(s):  
Hisai Ueda ◽  
Wataru Okumura ◽  
Hideyuki Uematsu ◽  
Shuichi Tanoue

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2268
Author(s):  
Pavel V Kosmachev ◽  
Vladislav O Alexenko ◽  
Svetlana A Bochkareva ◽  
Sergey V Panin

Laminated composites based on polyetheretherketone (PEEK) and polyimide (PI) matrices were fabricated by hot compression. Reinforcing materials (unidirectional carbon-fiber (CF) tapes or carbon fabric) and their layout patterns were varied. Stress–strain diagrams after three-point flexural tests were analyzed, and both lateral faces of the fractured specimens and fractured surfaces (obtained by optical and scanning electron microscopy, respectively) were studied. It was shown that the laminated composites possessed the maximum mechanical properties (flexural elastic modulus and strength) in the case of the unidirectional CF (0°/0°) layout. These composites were also not subjected to catastrophic failure during the tests. The PEEK-based composites showed twice the flexural strength of the PI-based ones (0.4 and 0.2 GPa, respectively), while the flexural modulus was four times higher (60 and 15 GPa, correspondently). The reason was associated with different melt flowability of the used polymer matrices and varied inter- (intra)layer adhesion levels. The effect of adhesion was additionally studied by computer simulation using a developed two-dimensional FE-model. It considered initial defects between the binder and CF, as well as subsequent delamination and failure under loads. Based on the developed FE-model, the influence of defects and delamination on the strength properties of the composites was shown at different stress states, and the corresponding quantitative estimates were reported. Moreover, another model was developed to determine the three-point flexural properties of the composites reinforced with CF and carbon fabric, taking into account different fiber layouts. It was shown within this model framework that the flexural strength of the studied composites could be increased by an order of magnitude by enhancing the adhesion level (considered through the contact area between CF and the binder).


1993 ◽  
Vol 19 (1) ◽  
pp. 29-31
Author(s):  
Akira NISHIMURA ◽  
Kiyoshi HOMMA ◽  
Junichi MATSUI

2019 ◽  
Vol 1 (3) ◽  
pp. 219-224
Author(s):  
Andikanoza Pradiptiya ◽  
A’isyah Salimah

AbstractSome buildings impose limits on the foundation displacement that occur with relatively small values so as not to cause structural damage. The test method used was to make a model test box as a testing medium by simulating the actual model into the form of a scale model. The study was conducted using a single pile foundation with reduced scale, made of concrete with a diameter of 0.02 m, 0.03 m, 0.04 m and the length of each pile was 0.4 m. The pile model was mounted by pressing into the clay that had been compacted in the test box and then given a tensile load which refers to ASTM D3689-07 procedure E (Constant Rate of Uplift Test). Mobilization of pile friction resistance at critical displacement determined the frictional resistance of the ultimate pile units. The test results showed that the greater the diameter of the pile, the frictional resistance of the ultimate pile units would increase. The increase in frictional resistance of the ultimate pile units showed an average value of around 17.1%.Keywords : Pile foundation, Pile diameter, Friction resistance.AbstrakMeningkatnya pembangunan hunian mengakibatkan naiknya permintaan akan batako, hal ini tentunya Beberapa konstruksi bangunan memberikan batasan kepada perpindahan tiang yang terjadi dengan nilai yang relatif kecil supaya tidak menyebabkan kerusakan struktur. Metode uji yang dipakai adalah membuat box uji model sebagai media pengujian, dengan mensimulasikan model yang sebenarnya ke dalam bentuk model skala. Penelitian dilakukan menggunakan model pondasi tiang tunggal penampang lingkaran lingkaran skala tereduksi yang terbuat dari beton dengan diameter 0,02 m, 0,03 m, 0,04 m dan panjang  masing-masing tiang adalah 0,4 m. Model tiang dipasang dengan cara ditekan pada tanah lempung yang sudah dipadatkan dalam box uji kemudian diberikan beban tarik yang mengacu pada ASTM D3689-07 prosedur E (Constant Rate of Uplift Test). Mobilisasi tahanan gesek tiang pada perpindahan tiang kritis menetukan tahanan gesek satuan ultimit. Hasil uji memperlihatkan bahwa semakin besar diameter tiang, tahanan gesek satuan ultimit tiang akan bertambah. Peningkatan tahanan gesek satuan ultimit tiang menunjukkan rata-rata sekitar 17,1 %.Kata kunci : Pondasi Tiang, Diameter Tiang, Tahanan Gesek Tiang.


2017 ◽  
Vol 88 (20) ◽  
pp. 2353-2361 ◽  
Author(s):  
Wei Fan ◽  
Dan-dan Li ◽  
Jia-lu Li ◽  
Juan-zi Li ◽  
Lin-jia Yuan ◽  
...  

To investigate the reinforcement architectures effect on the electromagnetic wave properties of carbon fiber reinforced polymer composites, three-dimensional (3D) interlock woven fabric/epoxy composites, 3D interlock woven fabric with stuffer warp/epoxy composites, and 3D orthogonal woven fabric/epoxy composites were studied by the free-space measurement system. The results showed that the three types of 3D woven carbon fiber fabric/epoxy composites had a slight difference in electromagnetic wave properties and the absorption was their dominant radar absorption mechanism. The electromagnetic wave absorption properties of the three types of composites were more than 90% (below −10 dB) over the 11.2–18 GHz bandwidth, and more than 60% (below −4 dB) over the 8–12 GHz bandwidth. Compared with unidirectional carbon fiber reinforced plastics, the three kinds of 3D woven carbon fiber fabric/epoxy composites exhibited better electromagnetic wave absorption properties over a broadband frequency range of 8–18 GHz. Therefore, the three kinds of 3D woven composite are expected to be used as radar absorption structures due to their excellent mechanical properties and outstanding absorption capacity. The total electromagnetic interference shielding effectiveness of the three types of 3D carbon fiber woven composites are all larger than 46 dB over the 8–12 GHz bandwidth, which is evidence that the three types of 3D carbon fiber woven composites can be used as excellent shielding materials for electromagnetic interference.


2011 ◽  
Vol 462-463 ◽  
pp. 1-6 ◽  
Author(s):  
Tao Suo ◽  
Yu Long Li ◽  
Ming Shuang Liu

As Carbon-fiber-reinforced SiC-matrix (C/SiC) composites are widely used in high-temperature structural applications, its mechanical behavior at high temperature is important for the reliability of structures. In this paper, mechanical behavior of a kind of 2D C/SiC composite was investigated at temperatures ranging from room temperature (20C) to 600C under quasi-static and dynamic uniaxial compression. The results show the composite has excellent high temperature mechanical properties at the tested temperature range. Catastrophic brittle failure is not observed for the specimens tested at different strain rates. The compressive strength of the composite deceases only 10% at 600C if compared with that at room temperature. It is proposed that the decrease of compressive strength of the 2D C/SiC composite at high temperature is influenced mainly by release of thermal residual stresses in the reinforced carbon fiber and silicon carbon matrix and oxidation of the composite in high temperature atmosphere.


Sign in / Sign up

Export Citation Format

Share Document