scholarly journals Damage Detection of Steel-Concrete Composite Beam

2018 ◽  
Vol 28 (3) ◽  
pp. 30-49
Author(s):  
Maciej Szumigała ◽  
Agnieszka Pełka-Sawenko ◽  
Tomasz Wróblewski ◽  
Małgorzata Abramowicz

Abstract The paper presents analysis results of steel-concrete composite beams, identification and attempts to detect damage introduced in a discrete model. Analysis of damage detection was conducted using DDL (Damage, Detection, Localization), our own original algorithm. Changes of dynamic and static parameters of the model were analysed in damage detection. Discrete wavelet transform was used for damage localization in the model. Prior to ultimate analysis, two-tier identification of discrete model parameters based on experimental data was made. In identification procedure, computational software (Python, Abaqus, Matlab) was connected in automated optimization loops. Results positively verified the original DDL algorithm for damage detection in steel-concrete composite beams, which enables further analysis using experimental data.

2020 ◽  
Author(s):  
Daniel Wallach ◽  
Taru Palosuo ◽  
Peter Thorburn ◽  
Zvi Hochman ◽  
Emmanuelle Gourdain ◽  
...  

Calibration, that is the estimation of model parameters based on fitting the model to experimental data, is among the first steps in essentially every application of crop models and process models in other fields and has an important impact on simulated values. The goal of this study is to develop a comprehensive list of the decisions involved in calibration and to identify the range of choices made in practice, as groundwork for developing guidelines for crop model calibration starting with phenology. Three groups of decisions are identified; the criterion for choosing the parameter values, the choice of parameters to estimate and numerical aspects of parameter estimation. It is found that in practice there is a large diversity of choices for every decision, even among modeling groups using the same model structure. These findings are relevant to process models in other fields.


1974 ◽  
Vol 16 (3) ◽  
pp. 196-204 ◽  
Author(s):  
A. de Pennington ◽  
J. J. ‘t Mannetje ◽  
R. Bell

The modelling of the control valve is shown to be a factor of prime importance in the design of electrohydraulic systems. The process required to model a commercially available valve is described in detail, with equal attention to the production of the experimental data and the identification of the model parameters. The quality of the decisions made in the construction of a model is shown to be most critically evaluated when derivative feedback loops are employed. A study of a system with negative transient acceleration feedback is included to illustrate the effectiveness of a third-order model. It is demonstrated that the use of a digital computer is essential for this type of system design.


2014 ◽  
Vol 627 ◽  
pp. 457-460
Author(s):  
Jana Kaděrová ◽  
Jan Eliáš

The paper describes results of numerical simulations of experiments on concrete beams loaded in three-point bending. Stochastic lattice-particle model has been applied in which the material was represented by discrete particles of random size and location. Additional spatial variability of material properties was introduced by stationary autocorrelated random field. Three different types of geometrically similar beams were modeled: half-notched, fifth-notched and unnotched, each in four different sizes. The deterministic and stochastic model parameters were identified via automatic procedure based on comparison to a subset of experimental data, so that the adequacy of the model response could be validated by comparison with the remaining experimental data.


1992 ◽  
Vol 23 (2) ◽  
pp. 89-104 ◽  
Author(s):  
Ole H. Jacobsen ◽  
Feike J. Leij ◽  
Martinus Th. van Genuchten

Breakthrough curves of Cl and 3H2O were obtained during steady unsaturated flow in five lysimeters containing an undisturbed coarse sand (Orthic Haplohumod). The experimental data were analyzed in terms of the classical two-parameter convection-dispersion equation and a four-parameter two-region type physical nonequilibrium solute transport model. Model parameters were obtained by both curve fitting and time moment analysis. The four-parameter model provided a much better fit to the data for three soil columns, but performed only slightly better for the two remaining columns. The retardation factor for Cl was about 10 % less than for 3H2O, indicating some anion exclusion. For the four-parameter model the average immobile water fraction was 0.14 and the Peclet numbers of the mobile region varied between 50 and 200. Time moments analysis proved to be a useful tool for quantifying the break through curve (BTC) although the moments were found to be sensitive to experimental scattering in the measured data at larger times. Also, fitted parameters described the experimental data better than moment generated parameter values.


Author(s):  
Afshin Anssari-Benam ◽  
Andrea Bucchi ◽  
Giuseppe Saccomandi

AbstractThe application of a newly proposed generalised neo-Hookean strain energy function to the inflation of incompressible rubber-like spherical and cylindrical shells is demonstrated in this paper. The pressure ($P$ P ) – inflation ($\lambda $ λ or $v$ v ) relationships are derived and presented for four shells: thin- and thick-walled spherical balloons, and thin- and thick-walled cylindrical tubes. Characteristics of the inflation curves predicted by the model for the four considered shells are analysed and the critical values of the model parameters for exhibiting the limit-point instability are established. The application of the model to extant experimental datasets procured from studies across 19th to 21st century will be demonstrated, showing favourable agreement between the model and the experimental data. The capability of the model to capture the two characteristic instability phenomena in the inflation of rubber-like materials, namely the limit-point and inflation-jump instabilities, will be made evident from both the theoretical analysis and curve-fitting approaches presented in this study. A comparison with the predictions of the Gent model for the considered data is also demonstrated and is shown that our presented model provides improved fits. Given the simplicity of the model, its ability to fit a wide range of experimental data and capture both limit-point and inflation-jump instabilities, we propose the application of our model to the inflation of rubber-like materials.


1978 ◽  
Vol 100 (1) ◽  
pp. 20-24 ◽  
Author(s):  
R. H. Rand

A one-dimensional, steady-state, constant temperature model of diffusion and absorption of CO2 in the intercellular air spaces of a leaf is presented. The model includes two geometrically distinct regions of the leaf interior, corresponding to palisade and spongy mesophyll tissue, respectively. Sun, shade, and intermediate light leaves are modeled by varying the thicknesses of these two regions. Values of the geometric model parameters are obtained by comparing geometric properties of the model with experimental data of other investigators found from dissection of real leaves. The model provides a quantitative estimate of the extent to which the concentration of gaseous CO2 varies locally within the leaf interior.


2015 ◽  
Vol 370 (1681) ◽  
pp. 20140267 ◽  
Author(s):  
Paul J. Ferraro ◽  
Merlin M. Hanauer

To develop effective protected area policies, scholars and practitioners must better understand the mechanisms through which protected areas affect social and environmental outcomes. With strong evidence about mechanisms, the key elements of success can be strengthened, and the key elements of failure can be eliminated or repaired. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. This essay assesses what mechanisms have been hypothesized, what empirical evidence exists for their relative contributions and what advances have been made in the past decade for estimating mechanism causal effects from non-experimental data. The essay concludes with a proposed agenda for building an evidence base about protected area mechanisms.


2016 ◽  
Vol 25 (12) ◽  
pp. 1650101 ◽  
Author(s):  
Luis Augusto Trevisan

In the present work, the effects of the nonextensivity are considered in a model to obtain the polarized structure function for the proton and neutron, including the strange contribution for each one. Any type of symmetry is made in consequence of the experimental data involved.


Author(s):  
Francesco Braghin ◽  
Federico Cheli ◽  
Edoardo Sabbioni

Individual tire model parameters are traditionally derived from expensive component indoor laboratory tests as a result of an identification procedure minimizing the error with respect to force and slip measurements. These parameters are then transferred to vehicle models used at a design stage to simulate the vehicle handling behavior. A methodology aimed at identifying the Magic Formula-Tyre (MF-Tyre) model coefficients of each individual tire for pure cornering conditions based only on the measurements carried out on board vehicle (vehicle sideslip angle, yaw rate, lateral acceleration, speed and steer angle) during standard handling maneuvers (step-steers) is instead presented in this paper. The resulting tire model thus includes vertical load dependency and implicitly compensates for suspension geometry and compliance (i.e., scaling factors are included into the identified MF coefficients). The global number of tests (indoor and outdoor) needed for characterizing a tire for handling simulation purposes can thus be reduced. The proposed methodology is made in three subsequent steps. During the first phase, the average MF coefficients of the tires of an axle and the relaxation lengths are identified through an extended Kalman filter. Then the vertical loads and the slip angles at each tire are estimated. The results of these two steps are used as inputs to the last phase, where, the MF-Tyre model coefficients for each individual tire are identified through a constrained minimization approach. Results of the identification procedure have been compared with experimental data collected on a sport vehicle equipped with different tires for the front and the rear axles and instrumented with dynamometric hubs for tire contact forces measurement. Thus, a direct matching between the measured and the estimated contact forces could be performed, showing a successful tire model identification. As a further verification of the obtained results, the identified tire model has also been compared with laboratory tests on the same tire. A good agreement has been observed for the rear tire where suspension compliance is negligible, while front tire data are comparable only after including a suspension compliance compensation term into the identification procedure.


Sign in / Sign up

Export Citation Format

Share Document