scholarly journals Demonstration of a Multiple Drift Net for Aquatic Organisms

2021 ◽  
Vol 79 (1) ◽  
pp. 25-32
Author(s):  
Michael D. Porter ◽  
Seth Kennedy ◽  
Juddson Sechrist

Abstract The distribution of drifting semi-buoyant fish eggs within a river is useful for understanding the ecology of pelagic-broadcast spawning fish. The vertical position of semi-buoyant eggs in the water column is an important parameter describing transport processes for these species. We designed a multiple drift net (five rectangular nets attached to a frame) to vertically divide the water column into stacked horizontal layers to sample drifting semi-buoyant particles. We deployed the multiple drift net gear beside Moore egg collectors in a wadeable channel to sample the vertical distribution of semi-buoyant polyacrylamide gel beads as surrogates for fish eggs in the water column. The vertical distribution of beads was predominantly found in the deeper nets of the multiple drift net gear while the surface nets and Moore egg collectors had fewer beads which is similar to the results in other studies of pelagic-broadcast spawning fish. The multiple drift net gear is a tool that demonstrates the capability to sample the water column under variable flow conditions (depth, velocity and turbulence) for field data on the vertical distribution of drifting eggs (or surrogates). These empirical data can quantify drift patterns of eggs for modeling transport and retention in pelagic-broadcast spawning species.

1994 ◽  
Vol 51 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Patrick Ouellet ◽  
Denis Lefaivre

In the northwestern Gulf of St. Lawrence in spring 1987 and 1988, stage I and II northern shrimp (Pandalus borealis) larvae were concentrated in the upper (<30 m) layers above the permanent pycnocline and coincident with subsurface chlorophyll a and suspended particle concentration maxima; this was above other macrozooplankton taxa in the daytime. Shrimp larvae maintained their vertical position relative to the maximum density gradient in the water column in daytime but moved towards the surface at night. Estimation of larval residual transport (~66 km) during the first developmental stage (12 d) corresponded to the horizontal scale of patches of stage I shrimp larvae in the northwest sector of the Gulf. The result is consistent with the suggestion of localized and short-duration larval emergence in the sector. The direction of mass transport and current speed were similar throughout the upper layers of the water column; consequently, the direction and magnitude of larval shrimp transport were not dependent on their vertical position. We suggest that the vertical distribution maintained by shrimp larvae is a mechanism to ensure maximum food availability and to optimize development time in the stratified water of the northwestern Gulf of St. Lawrence.


2006 ◽  
Vol 64 (1) ◽  
pp. 18-30 ◽  
Author(s):  
P. Pepin ◽  
K. A. Curtis ◽  
P. V. R. Snelgrove ◽  
B. de Young ◽  
J. A. Helbig

Abstract Pepin, P., Curtis, K.A., Snelgrove, P.V.R., de Young, B., and Helbig, J.A. 2007. Optimal estimation of catch by the continous underway fish egg sampler based on a model of the vertical distribution of American plaice (Hippoglossoides platessoides) eggs – ICES Journal of Marine Science, 64, 18–30. We investigate how the vertical stratification of the water column (specifically density) affects predictions of the catch of American plaice eggs (Hipploglossoides platessoides) from a fixed-depth sampler [the continuous underway fish egg sampler (CUFES)] relative to the integrated abundance in the water column measured in bongo tows. A steady-state model of the vertical distribution of fish eggs coupled with a simple model of the vertical profile of eddy diffusivity (i.e. mixing) is applied. Key model parameters are estimated through optimization of a one-to-one relationship between predicted and observed catches fit, using a generalized linear model with a Poisson, negative binomial, or gamma error structure. The incorporation of data on the vertical structure of the water column significantly improved the ability to forecast CUFES catches when using Poisson or negative binomial error structure, but not using a gamma distribution. Optimal maximum likelihood parameter estimates for eddy diffusivity and egg buoyancy fell within the range of expected values. The degree of uncertainty in the parameterization of eddy diffusivity suggests, however, that greater understanding of the forces that determine the vertical profile of mixing is critical to achieving strong predictive capabilities. The inverse problem of predicting integrated abundance from CUFES catches did not benefit from the environmental-driven model because of the high uncertainty in the catches from the CUFES.


Biologia ◽  
2006 ◽  
Vol 61 (2) ◽  
Author(s):  
Martina Hudcovicová ◽  
Marian Vranovsky

AbstractOur observations indicate the vertical distribution of zooplankton and its seasonal changes in Dubník II reservoir (Slovakia) are determined mainly by the thermal regime of the reservoir, by transparency, and by fish and invertebrate predation. During periods of circulation, zooplankton vertical distribution in the whole water column was more homogeneous, whilst during summer temperature stratification zooplankton concentrated in the epilimnion — rotifers in higher layers than crustaceans. During summer stagnation a steep thermal gradient occurred at the boundary of the epi-and hypolimnion and low temperature and low dissolved oxygen in hypolimnion offered a refuge for Chaoborus flavicans larvae against fish, enabling coexistence of vertebrate and invertebrate predation. This evidence supports our previous findings concerning dominance of rotifers in zooplankton and representation of crustaceans by small-bodied species in the study reservoir. Steep thermal gradient and the presence of Chaoborus larvae caused very low zooplankton abundance in the lower part of the water column and a reduction of cladocerans refuges against fish to layers of thermocline or closely under thermocline where Daphnia cucullata and Daphnia parvula were found. Our previous assumptions about the high density of zooplanktivorous fish in Dubník II reservoir are supported by the fact that these small cladocerans are represented by smaller individuals in the upper layers and bigger individuals in deeper layers.


Ocean Science ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 431-453
Author(s):  
Rebeca de la Fuente ◽  
Gábor Drótos ◽  
Emilio Hernández-García ◽  
Cristóbal López ◽  
Erik van Sebille

Abstract. We study the vertical dispersion and distribution of negatively buoyant rigid microplastics within a realistic circulation model of the Mediterranean sea. We first propose an equation describing their idealized dynamics. In that framework, we evaluate the importance of some relevant physical effects (inertia, Coriolis force, small-scale turbulence and variable seawater density), and we bound the relative error of simplifying the dynamics to a constant sinking velocity added to a large-scale velocity field. We then calculate the amount and vertical distribution of microplastic particles on the water column of the open ocean if their release from the sea surface is continuous at rates compatible with observations in the Mediterranean. The vertical distribution is found to be almost uniform with depth for the majority of our parameter range. Transient distributions from flash releases reveal a non-Gaussian character of the dispersion and various diffusion laws, both normal and anomalous. The origin of these behaviors is explored in terms of horizontal and vertical flow organization.


2004 ◽  
Vol 21 (2) ◽  
pp. 169-177 ◽  
Author(s):  
Erlei Cassiano Keppeler ◽  
Elsa Rodrigues Hardy

The aim of investigation was to study the model of vertical distribution in Lago Amapá, taking into consideration the seasonality of its zooplanktonic composition. Lago Amapá (10º2'36"S and 67º50'24"W) is located in the floodplain of the Rio Acre. Samplings were conducted at three different depths of the water column, to study the vertical distribution of zooplankton populations and determine some physico-chemical and biological parameters of Lago Amapá. Weekly samples were taken with a Van Dorn sampler. The species showed greater concentrations at the by means of water column. Thirty-eight zooplankton species were found in the samples represented by Rotifera (30), Cladocera (5) and Cyclopoida (3). The temperature of the water column showed a tendency toward relatively high values (about 30ºC) with little variation, consequently resulting in low viscosity. Based of Jaccard's index, it was seen that during the low-water phase, S1 and S3 of the three sampling stations studied, had greater similarity (Cj = 0.7058) in the middle of the water column. Lago Amapá showed characteristics in line with the intermediate disturbance hypothesis model, favoring colonization by opportunistic species such as rotifers.


2004 ◽  
Vol 61 (8) ◽  
pp. 1243-1252 ◽  
Author(s):  
A. Sabatés

Abstract The vertical distributions of the larvae of shelf and oceanic fish species that spawn during the winter-mixing period in the Mediterranean are described from 22 vertically stratified plankton tows. Diel differences in the vertical distribution patterns in relation to physical data and potential prey abundance throughout the water column were examined. Even in absence of stratification, the larvae of the various fish species showed different patterns of vertical distribution and diel changes. The larvae of shelf-dwelling species were found in the surface layers, mainly above 50-m depth, and with some exceptions, with very little diel variation in depth distribution. Therefore, the vertical distribution of the larvae of these species coincided with the maximum concentrations of their potential food, nauplii and copepodite stages of copepods. The larvae of mesopelagic fishes showed deeper distributions in the water column and most of these species were located closer to the surface during the day than at night. Given the homogeneity of the physical characteristics throughout the water column, except for light, this behaviour may be determined not only by the higher concentration of prey in the surface layers but also by adequate light levels for feeding.


Crustaceana ◽  
2014 ◽  
Vol 87 (13) ◽  
pp. 1486-1499 ◽  
Author(s):  
Harmon Brown ◽  
Harmon Brown ◽  
Stephen M. Bollens ◽  
Harmon Brown ◽  
Stephen M. Bollens ◽  
...  

We sampled for vertical distribution and possible diel vertical migration (DVM) of Crangon septemspinosa Say, 1818 on and around Georges Bank, Northwest Atlantic, between 1995 and 1999. Both juveniles and adults were found to undergo DVM, being distributed within the lower water column (and perhaps on or in the bottom) during the day, and distributed throughout the water column at night, with higher abundances seen in all depth strata at night. Differences in vertical distribution were also found based on location and chlorophyll concentration for juveniles, but no effects were seen of season, salinity, temperature, lunar periodicity, year, or copepod prey for either juveniles or adults. Variation in vertical distribution and DVM were only moderately well explained (50% of the total variance) by the above factors, suggesting that some other factor(s) not measured by us (e.g., predation) were potentially also controlling the vertical distribution and diel migration of C. septemspinosa on Georges Bank.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2016
Author(s):  
Marija Kvesić ◽  
Marin Vojković ◽  
Toni Kekez ◽  
Ana Maravić ◽  
Roko Andričević

The vertical distribution of chlorophyll in coastal waters is influenced by a combination of the hydrodynamic environment and different biotic and abiotic processes. The spatial and temporal occurrences of chlorophyll profiles provide a good representation of the changes in the marine environment. The majority of studies in the Adriatic Sea have so far been conducted in areas unaffected by anthropogenic pressure. Our study site is located near two marine outfalls, which are part of the public sewage system. This study aims to characterize the chlorophyll vertical distribution and describe its variability based on the stratification conditions and the presence of a wastewater effluent plume. Based on these conditions, we identified three characteristic scenarios/types of chlorophyll profiles. The first one occurs when the vertical mixing of the water column creates the upwelling of chlorophyll and nutrients to the upper part of the water column. The second and third scenarios occur during stratified conditions and differ by the extent of the effluent plume intrusion. Using modern fluorescence techniques, we identified and described three different vertical chlorophyll profiles, characterizing them according to their physical and biological parameters and processes. For cases with a visible effluent intrusion, we confirmed the importance of the pycnocline formation in keeping the effluent below and maintaining the higher water quality status at the top of the water column.


2020 ◽  
Vol 96 (2) ◽  
Author(s):  
Andrea Di Cesare ◽  
Ester M Eckert ◽  
Camille Cottin ◽  
Agnès Bouchez ◽  
Cristiana Callieri ◽  
...  

ABSTRACT Lakes are exposed to anthropogenic pollution including the release of allochthonous bacteria into their waters. Antibiotic resistance genes (ARGs) stabilize in bacterial communities of temperate lakes, and these environments act as long-term reservoirs of ARGs. Still, it is not clear if the stabilization of the ARGs is caused by a periodical introduction, or by other factors regulated by dynamics within the water column. Here we observed the dynamics of the tetracycline resistance gene (tetA) and of the class 1 integron integrase gene intI1 a proxy of anthropogenic pollution in the water column and in the sediments of subalpine Lake Maggiore, together with several chemical, physical and microbiological variables. Both genes resulted more abundant within the bacterial community of the sediment compared to the water column and the water-sediment interface. Only at the inset of thermal stratification they reached quantifiable abundances in all the water layers, too. Moreover, the bacterial communities of the water-sediment interface were more similar to deep waters than to the sediments. These results suggest that the vertical distribution of tetA and intI1 is mainly due to the deposition of bacteria from the surface water to the sediment, while their resuspension from the sediment is less important.


Sign in / Sign up

Export Citation Format

Share Document